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Stabilizing and shaping autonomous flows of active fluids is a fundamental challenge and a prerequisite
for applications. We embed a light-responsive microtubule-based nematic in a proportional-integral control
loop that adjusts the applied light intensity in response to real-time measurements of the spatially averaged
flow speed. The self-regulating hardware-software-wetware system maintains a target flow speed against
external or internal perturbations, including protein aging and aggregation, sample-to-sample variability,
and temperature variation. Varying the controller’s gains reveals antagonistic roles between feedback and
intrinsic processes, leading to nontrivial dynamics observed in fluctuation spectra. In particular, oscillations
emerge from the interplay between the controller, motor binding kinetics, and active hydrodynamic
relaxation. Accounting for the underlying binding timescale, our coarse-grained model and nematohy-
drodynamics simulations corroborate these observations. This work provides insight into the coupled
dynamics of controlled active matter, laying the foundation for spatiotemporal patterning of active stress to
generate and stabilize new dynamical configurations.
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I. INTRODUCTION

Living systems exhibit complex dynamical behaviors
that are robust against external and internal perturbations.
This resilience emerges from endogenous feedback mech-
anisms that continuously reinforce functional attractor
states, managing essential physiological processes such
as cell division, motility, and morphogenesis [1–5]. These
exquisite yet robust dynamical behaviors inspired efforts
to create analogous synthetic materials. A promising route
involves reconstituting nonequilibrium systems from puri-
fied cytoskeletal components. The resulting materials
exhibit diverse dynamics ranging from aster formation,
bulk contractions, flocking transitions, active nematic
liquid crystals, active foams, and spontaneously flowing
active fluids [6–15]. However, while bottom-up designs

replicate certain features of living matter, they lack engi-
neered control mechanisms for autonomous stability or
dynamical state transitions [16]. Moreover, achieving a
target behavior is challenging because such far-from-
equilibrium materials tend to be unstable, exhibiting
chaotic dynamics and spontaneous switching among multi-
ple coherent states [17–19]. Incorporating control into
active matter holds the potential not only to stabilize the
system against perturbations, but also to direct its dynami-
cal evolution, thereby opening new frontiers in materials
science and synthetic biology [20].
New dynamics of active matter can emerge in confined

geometries [21–33], patterning viscosity or anisotropyof the
underlying layer [34,35], variation of spatial adenosine
triphosphate (ATP) concentration or protein inhibitor
[36–38], and applied external flows [39]. However, these
methods generate dynamics that is largely predetermined
and cannot be easily altered during the experiment.
Photoactivable motor proteins enable spatiotemporal con-
trol of active matter, opening the possibility of program-
mable behaviors that were previously inaccessible [40–46].
Such goals require theoretical prescription for control
inputs that will steer the system toward the desired target.
At the level of hydrodynamics, optimal control and
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physics-informedmethods that reduce the dimensionality of
the control space have demonstrated potential [47–52]. At
the discrete level, optimal control yields inputs that guide
individual particle trajectories and ensembles [53–55].
Machine learning-based reinforcement learning and phys-
ics-informed neural networks provide alternative methods
for generating control policies that do not rely on preexisting
theoretical models [56–59]. However, even the most care-
fully designed strategies suffer from model mismatch,
unknown parameters, and degradation of the biomolecular
constituents over time, hindering practical implementations.
A time-tested approach to address these limitations

is to continuously remeasure and recalculate control inputs
[60]. Thus, feedback is an indispensable feature, but one
that has heretofore been unaddressed in the context of
active continua despite the successful implementation of
model-informed feedforward control [44,45]. Motivated
by these considerations we implement proportional-
integral (PI) feedback to stabilize active nematics flows
against external temperature perturbations and internal
protein-induced degradation and drift. The feedback
scheme enables rapid switching between different target
dynamics and controls the magnitude of the intrinsic
fluctuations of active nematics. Theory and numerics
provide a quantitative foundation for controlling the
dynamics of active liquid crystals. The power spectra of
activity-driven hydrodynamic fluctuations reveals a com-
plex interplay between the system’s intrinsic timescales

and controller gains. Notably, this coupling leads to reentrant
transitions between underdamped and overdamped
dynamics. Our work underscores the importance of coupling
theory and experiment to develop adaptive, nonequilibrium
materials with tailored functionalities. Beyond active fluids,
the developed methods could be applied to other photo-
responsive systems, including active colloids [61,62], bac-
teria [63–65], and microswimmers [66–68].

II. RESULTS

A. Microtubule-based active nematics

We study two-dimensional active nematics assembled
from microtubules driven by clusters of light-activated
kinesin molecular motors [40,42,43,69]. The high micro-
tubule density promotes local nematic alignment, while
the extensile stresses generated by molecular motors
amplify the local bend deformations [9,70], creating motile
topological defects and large-scale chaotic material flows
[71,72]. While these nonequilibrium materials reach quasi-
steady-state behavior within minutes of activation, they
often exhibit long-term drifts from degradation or proteins
and/or fluctuations in environmental conditions. Light-
activated nematics have poor reproducibility. Their speed
is sensitive to temperature variations [Fig. 1(b)] [36], as
well as high sample-to-sample variations, as well as the
variation in speed of a single sample over time as the
material ages [Figs. 2(d)–2(f)]. In contrast, living matter
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FIG. 1. Feedback control regulates active nematic flows. (a) Integration of hardware, wetware, and software into a control system. (a)
(I) A PI control algorithm adjusts the applied light to regulate the mean speed. (a)(II) A spatially uniform light field with time-varying
intensity is projected onto the sample, where light-sensitive kinesin motors drive the active nematics flows. (a)(III) The system state is
measured by fluorescence video microscopy. Optical flow generates a vector flow field [73], which is reduced to the mean speed.
(b) Variation of the nematic speed relative to its set point, with and without feedback control, during two cycles of time-varying
temperature. The applied light automatically decreases as temperature increases and vice versa to minimize the error. The average
magnitude of deviation from the set point under control is 4.3 times less than without control. Control parameters: K�

p ¼ 7.1 and
K�

i ¼ 0.071 s−1.
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maintains self-regulating homeostasis, which stabilizes
target dynamics despite perturbations. We use feedback
to control the speed of active nematics.

B. Demonstration of control

We developed a hybrid hardware-software system that
integrates real-time imaging and analysis with optical
stimulation [Fig. 1(a)]. Our platform features a light source
that projects spatially and temporally varying light patterns

onto the light-responsive active nematic. The system
continuously acquires high-resolution images of the active
nematic, which are processed in real time to extract the two-
dimensional flow field, orientation field, and positions of
topological defects. All components, including microscopy,
device control, image processing, and feedback algorithms,
are controlled by custom PYTHON scripts, providing a
flexible framework that accommodates a wide range
of tasks.
We use proportional-integral feedback to stabilize the

spatially averaged flow speed v ¼ hjvðx; tÞjix at a target
magnitude vset [Fig. 1(a)]. The light projector applies a
uniform light field across the entire active nematic sample,
producing spatially uniform motor cluster binding.
Machine learning-based optical flow measures the flow
field from two sequential images captured one second
apart [73]. Similar performance can likely be achieved
using conventional particle image velocimetry algorithms.
Subsequently, the feedback cycle is completed by calcu-
lating the spatially averaged flow speed of the nematic and
feeding this value back into the control algorithm to adjust
the projected light intensity.
As a demonstration of our system, we show its ability

to maintain a target speed under large applied thermal
perturbations [Fig. 1(b)]. Kinesin-motor stepping and,
consequently, active nematic flow speeds, are sensitive
to temperature variations [36]. In the absence of control,
thermal cycling induces large and persistent deviations in
speed [Fig. 1(b)]. When under control, the speed trajectory
remains close to the set speed, exhibiting little deviation,
despite the applied heat perturbations. The time trajectory
of the applied light highlights the controller’s ability to
dynamically adjust the applied light to compensate for
system changes.

C. PI control and light response calibration

We accomplish our control objectives by implementing a
minimal, model-free proportional-integral control law,

I ¼ Kpðvset − vÞ þ Ki

Z
t

0

ðvset − vÞdt0; ð1Þ

where I is the applied light intensity determined by the sum
of two contributions: one proportional to the instantaneous
error, errðtÞ ¼ vset − v, and the other proportional to the
integrated time history of the error. Kp and Ki control
“gains” that dictate the magnitude of the contributions of
the two terms. The PI control allows for the light intensity
to be negative. However, as this is experimentally unfea-
sible, the light intensity is set to its minimum value,
ensuring uninterrupted regulation of the nematic speed.
The response of the system to applied light arises from

the reversible light-dependent binding of kinesin-motor
proteins [K365-micro and K365-iLID; Fig. S1 in
Supplemental Material (SM)] into heterodimeric motor
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FIG. 2. PI control adapts to the aging of an active nematic and
rapidly switches between set points. (a) The application of light
reduces the dissociation constant of the light-responsive kinesin
fusion proteins, K365-iLID and K365-micro, promoting the
formation of heterodimeric motor clusters. (b) Incorporation of
motor proteins in a 2D nematic generates light-dependent flows
whose speed increases linearly between 0 and 0.15 mWcm−2.
(c) Experimental scatter between sample preparations leads to
differences in β with an average of 14.0 μms−1 cm2 mW−1 and
standard deviation of 4.6 μms−1 cm2 mW−1. (d) The dynamic
range of the flow decreases over time due to both a reduction in
maximum speed and an increase in minimum speed. (e) Signifi-
cant aggregation occurs over time, evidenced by the accumu-
lation of large irregular clusters of tubulin. Similar aggregation is
seen in the motor clusters (Fig. S1 in SM [74]). (f) The control
system successfully maintains a set mean speed, and rapidly
acquires a new mean speed upon changing the set point. The PI
control algorithm adjusts the applied light to compensate
for changes in the light response of the system over time (SM
Movie 1 [74]). Data represented in (b), (d), and (f) are derived
from different experiments and therefore exhibit quantitative
differences in measurements.
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clusters [Fig. 2(a)] [74]. In the absence of light, unbound
kinesin monomers walk freely on microtubules but do not
create large-scale material reconfiguration. Light induces
formation of motor clusters, which in turn drive relative
sliding between adjacent microtubules, generating large-
scale nematic flows. Thus, light serves as a “clutch,”
engaging and disengaging the transmission of nanoscale
motion to macroscopic material flows.
The speed of the photoresponsive active nematic

increases linearly with light at low intensities
[Fig. 2(b), β¼18.7μms−1cm2mW−1]. Within this regime
(0–0.15 mWcm−2), the steady-state speed follows
vss ∼ βIss. At higher intensities, the speed saturates.
The biomolecular constituents are susceptible to degra-
dation, aggregation, and sample-to-sample variability.
Consequently, β varies between samples by 40%, posing
challenges for open-loop control design [Fig. 2(c)].
Furthermore, within a single sample, the light response
degrades over time as motors and microtubules aggregate
[Figs. 2(d) and 2(e) herein and Fig. S1 in SM [74] ]. These
observations highlight the limitations of an open-loop
approach, as the lack of a fixed relationship between light
intensity and speed prevents reproducible dynamics.
The feedback control reliably switched between different

steady-state dynamics. We set a target speed that followed a
square wave trajectory [Fig. 2(f) (black)]. Unlike open-loop
control, which failed to correct for degradation and drift,
the PI controller continuously adjusted the applied light
intensity to compensate for long-term drift in the response
[Fig. 2(f) (blue)]. As a result, the measured speed followed
the prescribed trajectory, while also responding dynami-
cally to the intrinsic hydrodynamic fluctuations of the
nematic [Fig. 2(f) (red)].

D. Tuning control parameters

Complex dynamics emerges from the interactions
between a controller and a system’s intrinsic behaviors.
For example, PI controllers can induce oscillatory behavior
in otherwise overdamped systems [60]. Thus, while PI
controllers are ubiquitous, due to being model-free, effec-
tive, and simple to implement, they are successful only
when properly tuned. Controlling active systems introduces
further nuances due to their intrinsic fluctuations. Next, we
study controlled active nematics by systematically varying
Ki and Kp.
We compare our results to two theoretical models. The

first is an empirically motivated linear model governed by
two intrinsic timescales: the coarse-grained mean speed’s
relaxation τv and the motor binding dynamics τm [Eqs. (B1)
and (B2) in Appendix B]. The model predicts the steady-
state speed [v�ss, Eq. (B4)] and the spectral characteristics of
its fluctuations [Eq. (B5)]. These steady-state expressions
include the susceptibility of the nematic speed to applied
light, or β, which is experimentally measured [Fig. 2(b)].
Knowing β and the control gains allows us to compare

results between theory and experiment as a function of
rescaled gains K�

p;i ¼ βKp;i (Appendix B). Second, we also
compare results to numerical simulations of the full
nematohydrodynamic equations subject to the same control
law Eq. (1) and motor dynamics Eq. (B2). Here, too,
a measurement of β in silico enables comparison.
We first consider proportional-only control by system-

atically varying K�
p while setting K�

i ¼ 0. In proportional
control, the output light intensity varies linearly with the
instantaneous deviation of the measured speed from the set
point. This control law generates steady-state error, known
as droop, where the measured speed is systematically lower
than the target speed by a constant value. We found that
experimentally measured droop increases with decreasing
K�

p [Fig. 3(a)]. Droop is a generic feature of proportional-
only control. Thus, it provided a robust benchmark for
comparing experiments to the analytical model and simu-
lation. With increasing gain, the dimensionless steady-state
speed v�ss [Eq. (B4), Appendix B] asymptotically and
monotonically approaches the set speed. Without fitting
parameters, this is in excellent agreement with results from
experiment and simulation [Fig. 3(b)].
Proportional-only feedback requires large gains to

approach target set points, which often induce large over-
shoots [K�

p ¼ 12 curve in Fig. 3(a)]. Introducing the
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dictions, Eq. (B4). (c) Response of system at set speed of
1.3 μms−1 with varied integral gain terms. (d) Steady-state droop
disappears when the integral term is used.

KATSU NISHIYAMA et al. PHYS. REV. X 15, 041053 (2025)

041053-4



integral control term regulates the dynamics, that attains the
exact target speed by accumulating the error over time and
adjusting the control to bring the offset to zero. Any amount
of Ki drives the system to the set point, but faster
equilibration required larger Ki [Figs. 3(c) and 3(d)].
Notably, while introducing Ki removes droop, high values
of Ki generate oscillations [Fig. 3(c)]. This behavior can be
evaluated throughout parameter space. A phase diagram
describing both the timescale of approach to the set point
and the frequency of oscillation demonstrates an optimal
combination of Kp and Ki that rapidly approaches the set
point (Fig. S5) [74]. Thus, carefully tuned gain parameters
are critical for optimal dynamics.

E. Spectral response of system to PI control

We showed that PI control regulates the spatially
averaged flow speed of an active nematic. However, there
are significant temporal fluctuations that strongly depend
on the control parameters. To illustrate, we perform experi-
ments in which the controller switches between on and
off states (Fig. 4). When engaged, the controller actively
manages the applied light in response to measured dynam-
ics; when disengaged, a constant light intensity is applied,
determined by the average of the previous closed-loop
window. The resulting speed trajectory and histogram
shows that the amplitude and timescale of the set point
deviations are strongly impacted by the feedback loop
[Figs. 4(a) and 4(b)].
To understand these fluctuations, we compute their

power spectral density, PSDðvÞ. In the absence of control,
the PSDðvÞ exhibits white noise fluctuations at low
frequencies, transitioning to a power law above a corner
frequency [dashed black line in Fig. 5(a)]. This establishes
a baseline against which we compare the effects of applied
control. Our model produces the same Lorentzian-like
response, where the corner frequency fv is inversely related
to v’s relaxation time such that fv ¼ ð2πτvÞ−1 [Eqs. (B1)
and (B2)]. Interestingly, these dynamics do not exhibit a

signature of the internal timescale associated with kinesin-
motor cluster formation (τm). However, this timescale
emerges when the controller is engaged and its action
couples with the system’s response.
The addition of control decreases the fluctuations

from the set point, leading to a decrease in the amplitude
of the PSDðvÞ compared to uncontrolled samples.
However, the suppression of fluctuations is not uniform
across the spectra. We explored the frequency response for
proportional-only [Figs. 5(a) and 5(b)] and proportional-
integral [Figs. 5(d) and 5(e)] control for a range of Kp

values. For example, increasing Kp strongly attenuates the
low-frequency fluctuations [Figs. 5(a) and 5(d)], which is
corroborated by theory [Figs. 5(b) and 5(e)].
The heterogeneous action of the controller across time-

scales becomes particularly evident at large gains, where it
gives rise to peaks at selected frequencies, indicative of
oscillatory dynamics. Experimentally, the PSDðvÞ displays
peaks near f ∼ ð1 × 10−2 HzÞ for sufficiently large Kp

values [Figs. 5(a), 5(b), 5(d), and 5(e)]. The emergence of
these peaks corresponds to a transition from overdamped to
underdamped behavior, which is also captured in the
autocorrelation function (Fig. S2 [74]). The linear ordinary
differential equation model clarifies that these coherent
fluctuations result from the interaction between the controller
and the intrinsic motor response timescale of the active
nematic [Eqs. (B1) and (B2)]. Notably, in the analytical
model the motor dynamics time lag is essential for creating
oscillations under proportional-only control. By contrast,
oscillations do not emerge if control acts directly on the
velocity field. In this case the dynamics Eq. (B1) reduces to
v̇ ¼ −v=τv þ γKpðvset − vÞ and the single eigenvalue is real.
Oscillations distinguish PI control of active nematics from
simpler overdamped systems, highlighting the importance of
incorporating motor dynamics into predictive models.
Both experiment and theory identify distinct regions of

parameter space (fK�
p; K�

i g) corresponding to overdamped
and underdamped responses [Fig. 5(c)]. The boundary
between these is theoretically predicted by examining
the eigenvalues λ of the combined PI-nematic system
[Eq. (B6)]. The wedge-shaped region’s interior corresponds
to overdamped behavior [ImðλÞ ¼ 0] whereas the exterior
region supports oscillations [ImðλÞ > 0]. Experimental
observations of overdamped and underdamped responses
are consistent with this behavior. Integral control can turn
overdamped systems into harmonic oscillators. However,
we observe oscillations for large Kp, highlighting the
importance of motor dynamics, as oscillations are possible
only if intrinsic dynamics are second order or higher. This
facet of the system-controller dynamics gives rise to the
reentrant phase diagram [Figs. 5(c) and 5(f)].
We attribute the measurement scatter to sample variation

and aging, which affects the positions of points in the plot.
Notably, oscillations dominate much of the parameter space
suggesting that only a narrow range of parameters may be
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suitable for PI control. However, the practical criterion
is the magnitude of deviations from the set point. In this
context, the oscillatory deviations may remain small
enough to satisfy control objectives. While we focused
on steady-state behavior through the lens of power spectra,
examining the full response of the system through the
related transfer function could yield further insights [60].
We also compare nematohydrodynamic simulations

to our analytical theory, finding excellent agreement
[Fig. 5(f)]. As in experiment and theory, uncontrolled
nematics in simulations exhibit Lorentzian behavior char-
acterized by a single hydrodynamic timescale, τv (Fig. S3
[74]). τv found in simulations differs from experimental
values, leading to a change in the phase boundaries
[Fig. 5(c)]. Our estimates of τv and prescribed τm from
the simulation produce a theoretical phase diagram that
agrees with numerics, supporting our framing of the con-
trolled system as a coupled set of linearODEs that effectively
bridge experimental and computational observations.
In active fluids, intrinsic activity influences both the

mean speed and the magnitude of fluctuations. Thus,
fluctuations scale with the steady-state applied light.

This interplay between activity and control generates
nonmonotonic changes in fluctuations under propor-
tional-only control, a signature of regulating active materi-
als through their intrinsic activity. The steady-state speed
depends onKp whenKi ¼ 0 due to droop; see Fig. 3. At the
lowest gains, the speed and fluctuations remain small due to
weak activity [Fig. 5(a), K�

p ¼ 1.3]. As the gain increases to
K�

p ¼ 4.4, both speed and fluctuations grow, reflecting the
typical scaling with activity. However, strikingly, further
increases in K�

p cause fluctuations to decline. This non-
monotonic response arises because K�

p plays two compet-
ing roles in relation to fluctuations. On one hand, increasing
K�

p increases the mean speed, naturally amplifying activity-
driven fluctuations. On the other hand, larger K�

p strongly
penalizes deviations from the set point. For small gains,
the former mechanism dominates, while for large gains,
the damping of fluctuations due to control overrides the
activity-driven fluctuations.
Our theoretical model replicates the same nonmonotonic

trend by letting the amplitude of the system’s intrinsic
fluctuations scale with the K�

p-dependent steady state, such
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that η ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�

p=ð1þ K�
pÞ

p
. Increasing the gain from K�

p ¼
0.01 to 1 increases the amplitude across all frequencies
[Fig. 5(b)]. Further increasing the gain to K�

p ¼ 100

decreases the amplitude and leads to the emergence of a
peak, as discussed earlier. Integral control suppresses this
trend, thus confirming that droop is necessary for non-
monotonic behavior [Figs. 5(d) and 5(e)]. These observa-
tions illustrate how control interacts with the intrinsic
fluctuations of an active nematic, shaping their amplitude
in a way that naturally emerges from the material’s activity.

III. DISCUSSION AND CONCLUSIONS

A prominent feature of active nematic turbulence is the
tight coupling between spatial and temporal characteristics
[75]. We focused only on the temporal response by
analyzing the coarse-grained flow speeds. This approach
revealed significant impacts on the temporal structure of the
flow (Fig. 5). Given the expected coupling, future work
should consider if this impact is imprinted on the spatial
structure, which could open new avenues for employing
control strategies. The proposed coarse-grained linear
model represents a significant simplification of the full
nematohydrodynamic-controller system. We assumed that
motor-binding kinetics dominanted the time lag. However,
time lags are also introduced through the delays in the
control hardware and software itself, which includes finite
time required for velocity measurements, and the delays
between frame acquisitions and processing time; all told,
the cycle takes ∼3 s [Fig. 1(a)]. Consequently, the magni-
tude of applied light reflects a past configuration of the
system. Our current experimental setup makes it challeng-
ing to further decrease the time of the control loop;
however, a systematic exploration of increased time lags
would be informative. This may explain discrepancies
between theory and experiment. For example, when
compared to experiment, theory required much larger
Kp values to produce a prominent peak in the power
spectra [Figs. 5(a) and 5(b)].
The susceptibility of active nematics to light was

quantified by the proportionality constant β, which varied
from sample to sample and drifted over time by a factor
of 2. Reliable feedback control without precise knowledge
of β is possible, but its uncertainty leads to errors in our
ability to report systematic changes in dynamics. For
example, the data points in the phase diagram [Fig. 5(c)]
shift by coordinate rescaling, since both K�

i and K
�
p depend

linearly on β. The variation of other model parameters, such
as the time constants, is less characterized. To convey the
sensitivity of the model predictions to such parameters, we
show how the transition to underdamped behavior shifts
with τv;m (Fig. S4 [74]).
With motile topological defects and chaotic fluid flows,

2D active nematics evoke many control possibilities. We
established an experimental platform for autonomously

regulating a simple, coarse-grained property of the system,
its mean speed. However, in this realization, we have
underutilized the actuatable and observable degrees of
freedom available. This establishes a challenge to employ
control theory or reinforcement learning to elicit more
complex goals [47,48,51,52,56–58,76–79]. There remain
theoretical and technical challenges in implementing
model-based spatiotemporal control of active systems in
real time. First, while nematohydrodynamic models re-
create important statistical properties of active fluids, they
can fail at granular predictions of material flows in
microtubule-based nematics [25,47,49,51,80]. Thus, feed-
forward control maneuvers proposed in previous works
face complications. Recalculating control policies itera-
tively in a model-predictive control framework using
updated state information is a standard approach for over-
coming poor models. However, this tactic significantly
increases the computational burden of already taxing partial
differential equation-constrained optimization. A fully
realized model-based spatiotemporal controller for active
nematics will likely utilize a combination of theoretical [80]
and data-driven model improvements [81,82], some form
of model reduction to reduce state and controller degrees of
freedom [52], and leverage high-performance computing in
concert. We note that systems that exhibit light-induced
cross-linking and contractility may be more straightforward
to control using inverse design with available models
[44,45], as they lack the chaotic dynamics exhibited by
extensile active nematics.
Like active reconstituted materials, biological systems

engineered with optogenetic constructs are poised to use
model-based strategies for spatiotemporal control. For
example, exogenously patterning actomyosin contraction
in embryonic monolayers has proven effective for steering
in-plane cellular flows and driving out-of-plane buckling
[83–90]. Building on these successes, inverse problem
frameworks, especially those informed by advances in
modeling multicellular systems [5,91,92], present a power-
ful way to turn ad hoc methods into systematic strategies
for achieving complex tissue-scale patterning objectives.
Often, controller complexity is dictated by the control

goal. Spatially averaged targets, such as control of defect
density or mean speed of channel flows, are amenable to PI
control, which, being model independent, is likely to
succeed. However, more complex maneuvers are better
tackled by leveraging models, such as the empirically
motivated linear system through either model-predictive
or linear-quadratic-regulatory frameworks [Eqs. (B1) and
(B2)]. Model-predictive control is also a natural choice
when nonlinearities are unavoidable. For example, while
our kinesin-based system exhibits a simple relationship
with light, other active systems, such as actomyosin, exhibit
nonmonotonic responses [93], which are more readily
incorporated into model-predictive control. This jump in
complexity requires estimates for unmeasured dynamics
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(in our case, bound motor concentration, which is not
directly observable) and other uncertainties (i.e.,
β; τv; τm;…). For that reason, coarse-grained models are
an ideal test bed for exploring the implementation of
control theory, such as variational data assimilation and
Kalman filters, which would be more challenging to
prototype for spatiotemporal control goals.
In addition to these engineering challenges, steering

active matter systems raises questions about the thermo-
dynamic limits of control. An ongoing research topic is the
mapping of equilibrium statistical mechanical concepts,
such as the fluctuation dissipation theorem, to systems that
break time-reversal symmetry and, further, understanding
how control strategies differ between active and passive
systems [55]. Two nontrivial features of our experiment
warrant further investigation. First, the noise in our coarse-
grained model is fundamentally tied to the active rather
than the passive part of the system. For example, the
amplitude of fluctuations scales with steady-state speed
controlled by Kp [Fig. 4(a)]. Second, while at the macro-
scale light impacts activity, unilluminated motor proteins
continue to hydrolyze ATP and process along microtubules.
Furthermore, another contributor to the system’s dissipa-
tion, the glucose-fueled recycling of adenosine diphosphate
back to useful ATP [94], is also not affected by the light.
Instead, by dimerizing motors, the light field adds micro-
scopic constraints to the system, radically altering the
nature of dissipation in the system to include macroscale
fluid flows. Building minimal models that capture these
details may expose underlying laws governing nonequili-
brium biological materials and facilitate the construction of
control strategies.
The PI feedback can stabilize active flows despite

intrinsic athermal fluctuations, environmental perturba-
tions, and biomolecular degradation. The long-term goal
is to replace exogenous light control with endogenous
biochemical networks [95–98]. Analyzing a system’s
response to optogenetic actuation provides insight
into the rational design of intrinsic biochemical networks
[99–102], especially in light of the inherent fluctuations
in those signaling systems. Advances in synthetic
biology suggest that embedding such feedback in active
materials is feasible, paving the way for autonomous, self-
regulating systems.
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APPENDIX A: EXPERIMENTAL METHODS

We developed a system that integrates a 2D active
nematic (AN) with both hardware and software to imple-
ment feedback control. The microtubule-based active
nematic is actuated by light-sensitive kinesin-motor clus-
ters. Control of the system is realized through varying the
applied light emitted from a projector focused directly onto
the sample stage [Fig. 1(a)]. The control loop’s software
uses the Pycromanager library to coordinate the various
hardware components of the control system. Our routine
collects fluorescence images of the AN, calculates the mean
speed using a machine learning-based optical flow algo-
rithm [Fig. 1(b)] [73], and updates the uniformly applied
light intensity I of the projector according to Eq. (1)
[Fig. 1(c)].
Samples are enclosed in rectangular chambers composed

of glass whose bottom wall is coated with Rain-X to
create a hydrophobic surface and whose top surface is
grafted with polyacrylamide to create a hydrophilic surface.
These chambers are about 1 mm tall and about 10 × 5 mm2

in the sample plane. Fluorinated oil is flowed into the
chamber. Following this, aqueous solutions containing
microtubules, kinesin, polyethylene glycol depletant,
ATP, oxygen scavengers, and ATP-regeneration compo-
nents are flushed through, creating an oil layer beneath
the aqueous sample. The details of the active sample
are provided in SM Methods section [74] (see also
Refs. [9,40,42,73,104,105] therein). Our implementation
differs from previous realizations because the volume of the
chamber is increased ∼10-fold to increase the capacity of
phosphoenolpyruvate (PEP), which is the ATP precursor in
our ATP-regenerative enzymatic system [43]. The sample
is then centrifuged for 3 min to quickly concentrate the
microtubule bundles at the oil-water interface and placed
on the fluorescence microscope within the control system.
High intensity light is applied to activate the bundles and
pack them into a two-dimensional film. The active nematic
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is imaged with fluorescence microscopy and the control
system is then activated. Before feedback control is
recorded, experimental calibration is performed to allow
for interpretation of data and comparison to our theoretical
predictions. We measure the minimum flow speed of the
active nematic in the absence of applied light v0, as well as
the linear response as light is increased β.

APPENDIX B: THEORY

We frame our observations of both the steady-state mean
behavior and its fluctuations by developing a minimal
linear ordinary differential equation model describing the
coarse-grained dynamics of the spatially averaged speed v
and concentration of dimerized motors m such that

v̇ ¼ −v=τv þ γvmþ ηðtÞ; ðB1Þ

ṁ ¼ ðm0 −mÞ=τm þ γmI: ðB2Þ

A key feature of this model is that the control input IðtÞ
does not act directly on v, but through the intermediate
dynamics of motor activation. This model assumes an
infinite pool of motors available for dimerization. While
more complex models of light-activated materials built
from cytoskeletal components have been recently explored
[106], here we focus on the simplest case to minimize the
number of parameters in the model and facilitate analytical
calculations. In brief, Eq. (B1) considers that the average
speed v can change in three ways. The term −v=τv
represents the intrinsic relaxation dynamics of the active
nematic that we measure empirically, γvm represents
activity driven acceleration, and ηðtÞ represents activity-
driven noise. Equation (B2) considers that the motor
concentration that drives the active nematic can vary for
two reasons. The first, represented by ðm0 −mÞ=τm,
describes the dynamics of bound motors in the absence
of light, withm0 the amount of permanently bound motors,
while γmI describes how the motor concentration varies in
the presence of light.
The response of the system is governed by timescales for

hydrodynamic and motor dynamics τv;m. The latter was
measured previously τm ∼Oð10Þ s [43], and the former
we gather from our experiments here by examining the
power spectra and autocorrelation function of the uncon-
trolled system, τv ∼Oð100–1000Þ s. To compare theory
to nematohydrodynamics, we also empirically measure
the time constant τv ¼ 2.5 (dimensionless), with τm ¼ 5
(dimensionless) being prescribed. The model is driven
by white noise ηðtÞ. We note that when modeling the
control of a system, noise often represents exogenous
forcing. In our case, the dominant contributor of noise is
athermal and intrinsic to the active system itself, and, as
such, we will subsequently let the amplitude of the noise
scale with activity.

Finally, we introduce the proportionality coefficients
γm;v. Their exact values are unimportant for the steady-
state behavior of the system (average behavior and fluc-
tuations) because, as we will see shortly, they depend only
on a group of parameters coinciding with the experimen-
tally measurable constant β, introduced below.
We first consider features predicted by this model of the

limiting case of proportional-only control, e.g., Ki ¼ 0. For
proportional-only control, we solve Eqs. (B1) and (B2) for
the steady-state speed with I ¼ Kpðvset − vÞ and find

vss
vset

¼ ðβKp þ v0=vsetÞ
ð1þ βKpÞ

; ðB3Þ

where β is the measured proportionality between applied
light and velocity at steady state vss ∼ βIss and is defined in
terms of model coefficients β≡ τvτmγvγm. v0 ≡m0τmγv is
the measured dark speed. To facilitate comparison between
experiment for which v0 ≠ 0 and simulation, v0 ¼ 0, we
rearrange Eq. (B3) and define a dimensionless steady-state
speed accounting for the offset,

v�ss ≡ vss
vset

−
v0
vset

1

1þ K�
p
¼ K�

p

1þ K�
p
; ðB4Þ

where K�
p ¼ βKp is the dimensionless gain.

To compare our measurements of the fluctuations of the
average speed, we examine the frequency response of the
model Eqs. (1), (B1), and (B2) subject to white noise η.
As mentioned above, we posit that the dominant source of
fluctuations arises from the active hydrodynamic flows, so
we let the noise drive the system at the level of the velocity
dynamics, Eq. (B1). To account for the impact of droop on
these intrinsic fluctuations, we let the amplitude scale with
the square root of the steady-state mean speed [Eq. (B4)],
such that η ∼

ffiffiffiffiffiffi
v�ss

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�

p=ð1þ K�
pÞ

p
. It is straightforward

to show that for K�
i ≠ 0, v�ss ¼ 1.

We next consider steady-state fluctuations. Taking the
Fourier transform of all functions FðωÞ ¼ R

∞
−∞ dte−iωtfðtÞ

and solving the resulting linear system for the transformed
velocity VðωÞ gives

VðωÞ ¼ H
iωτvð1þ iωτmÞ

K�
i þ iωK�

p þ iωð1þ iωτmÞð1þ iωτvÞ
; ðB5Þ

where H is the amplitude of the white noise, and, as in
previous calculations, the unknown factors γv;m are absorbed
into the experimentally measurable factor β, and K�

p; K�
i ¼

βKp; βKi are the scaled gains. Plotting jVj2 yields predic-
tions as a function of parameters fK�

p; K�
i ; τv; τmg. Finally,

we identify the criterion for oscillations by solving the
characteristic equation for the eigenvalues of Eqs. (1), (B1),
and (B2),
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λ3 þ λ2
�
1

τm
þ 1

τv

�
þ λ

1þ K�
p

τmτv
þ K�

i
1

τmτv
¼ 0; ðB6Þ

and finding conditions where ImðλÞ > 0.

APPENDIX C: NUMERICAL METHODS

We compare experimental observations to a standard
model of nematohydrodynamics subject to PI control
and aforementioned motor-binding dynamics. For
simplicity, we set the active stress strength equal to the
active motor concentrationm. Nematic order is represented
by the traceless and symmetric second order tensor
Q ¼ s½n ⊗ n − I=2�, where n is the nematic orientation
and s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Q∶ Q
p

is the degree of order. Momentum
conservation, in the limit of low inertia and vanishing
passive liquid crystalline stresses, and incompressibility
govern the fluid flow v and hydrostatic pressure p such that

∂tQþ v ·∇Qþ ½Ω;Q� − λE ¼ ð1 − s2ÞQþ K∇2Q;

∇2v −∇p −m∇ ·Q − ξv ¼ 0;

∇ · v ¼ 0; ðC1Þ

where 2Ωij ¼ ∂jvi − ∂ivj and 2Eij ¼ ∂jvi þ ∂ivj are,
respectively, the antisymmetric and symmetric parts of
the flow field gradient, ½� � �� is the commutator. In our study,
we fix the strength of substrate friction ξ ¼ 0.01, nematic
elasticity K ¼ 4, and flow alignment λ ¼ 1.
Equations (C1) are coupled to the same ordinary differ-

ential equations governing the control input I and active
motors m in our coarse-grained model, Eqs. (1) and (B2).
Since we uniformly apply control to the entire domain, we
can ignore convection and diffusion processes in m. We fix
τm ¼ 5 and γm ¼ 0.2 in our simulations. We solve the
coupled system of PDEs, ordinary differential equation,
and control law using the spectral solver CUPSS [107] in a
domain size of 128 × 128 with 128 × 128 spatial modes.
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