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Topological structure and dynamics
of three-dimensional active nematics
Guillaume Duclos1*, Raymond Adkins2*, Debarghya Banerjee3,4, Matthew S. E. Peterson1,
Minu Varghese1, Itamar Kolvin2, Arvind Baskaran1, Robert A. Pelcovits5, Thomas R. Powers6,5,
Aparna Baskaran1, Federico Toschi7,8, Michael F. Hagan1, Sebastian J. Streichan2,
Vincenzo Vitelli9, Daniel A. Beller10†, Zvonimir Dogic1,2†

Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body
systems. For example, motile, point-like topological defects capture the salient features of
two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed
force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional
active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale
structure of these active nematics with single-bundle resolution. The primary topological excitations
are extended, charge-neutral disclination loops that undergo complex dynamics and recombination
events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk
anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues,
and collections of robots or organisms.

T
he sinuous change in the orientation of
birds flocking is a common but startling
sight. Even if one can track the orienta-
tion of each bird, making sense of such
large datasets is difficult. Similar chal-

lenges arise in disparate contexts from mag-
netohydrodynamics (1) to turbulent cultures
of elongated cells (2), where oriented fields
coupled to velocity undergo complex dynam-
ics. Tomake progress with such extensive three-
dimensional (3D) data, it is useful to identify
effective degrees of freedom that allow a coarse-
grained description of the collective nonequi-
librium phenomena. Promising candidates
are singular field configurations locally pro-
tected by topological rules (3–9). Examples
of such singularities in 2D are the topolog-
ical defects that appear at the north and south
poles when covering the Earth’s surface with
parallel lines of longitude or latitude. These
point defects are characterized by the winding
number of the corresponding orientation field.
The quintessential systems with orienta-

tional order are nematic liquid crystals, which

are fluids composed of anisotropic molecules.
In equilibrium, nematics tend to minimize
energy by uniformly aligning their anisotropic
constituents, which annihilates topological de-
fects. By contrast, in active nematic materials,
which are internally driven away from equi-
librium, the continual injection of energy de-
stabilizes defect-free alignment (10, 11). The
resulting chaotic dynamics are effectively rep-
resented in 2D by point-like topological de-
fects that behave as self-propelled particles
(12–16). The defect-driven dynamics of 2D
active nematics have been observed in many
systems ranging frommillimeter-sized shaken
granular rods and micrometer-sized motile
biological cells to nanoscale motor-driven bio-
logical filaments (17–23). Several obstacles have
hindered generalizing topological dynamics
of active nematics to 3D. The higher dimen-
sionality expands the space of possible defect
configurations. Discriminating between differ-
ent defect types requires measurement of the
spatiotemporal evolution of the director field
on macroscopic scales using materials that
can be rendered active away from surfaces.
The 3D active nematics that we assembled

are based on microtubules and kinesin mo-
lecular motors. In the presence of a depleting
agent, these components assemble into iso-
tropic active fluids that exhibit persistent
spontaneous flows (17). Replacing a broadly
acting depletant with a specific microtubule
cross-linker, PRC1-NS, enabled assembly of a
composite mixture of low-density extensile
microtubule bundles (~0.1% volume frac-
tion) and a passive colloidal nematic based
on filamentous viruses (Fig. 1A), a strategy
that is similar to work on the living liquid

crystal (21). Adenosine 5′-triphosphate (ATP)–
fueled stepping of kinesin motors generates
microtubule bundle extension and active
stresses that drive the chaotic dynamics of
the entire system (movie S1). Birefringence of
the compositematerial indicates local nematic
order (Fig. 1B), in contrast to active fluids lack-
ing the passive liquid crystal component.
Elucidating the spatial structure of a 3D

active nematic requires measurement of the
nematic director field on scales from micro-
meters to millimeters. Furthermore, uncov-
ering its dynamics requires acquisition of
the director field with high temporal resolu-
tion. To overcome these constraints, we used
a multiview light sheet microscope (Fig. 1C)
(24). The spatiotemporal evolution of the ne-
matic director field n(x,y,z,t) was extracted
from a stack of fluorescent images using the
structure tensor method. Spatial gradients
of the director field identified regions with
large elastic distortions (Fig. 1D and movie
S2). Three-dimensional reconstruction of such
maps revealed that large elastic distortions
mainly formed curvilinear structures, which
could either be isolated loops or belong to a
complex network of system-spanning lines
(Fig. 1E and movie S3). These curvilinear dis-
tortions are topological disclination lines
characteristic of 3D nematics. Similar struc-
tures were observed in numerical simulations
of 3D active nematic dynamics using either a
hybrid lattice Boltzmann method or a finite
difference Stokes solver numerical approach
(Fig. 1F) (25, 26).
Reducing the ATP concentration slowed

down the chaotic flows, which revealed the
temporal dynamics of the nematic director
field. In turn, this identified the basic events
governing the dynamics of disclination lines
(movie S4).We focused on characterizing the
closed loop disclinations because they are the
objects seen to arise or annihilate in the bulk.
Isolated loops nucleated and grew from un-
distorted, uniformly aligned regions (Fig. 2A,
figs. S1 and S2, and movie S5). Likewise, loops
also contracted and self-annihilated, leaving
behind a uniform region (Fig. 2B, figs. S1 and
S2, and movie S6). Furthermore, expand-
ing loops frequently encountered and subse-
quently merged with the system-spanning
network of distortion lines, whereas the dis-
tortion lines in the network self-intersected
and reconnected to emit a new isolated loop
(Fig. 2, C and D; figs. S1 and S2; and movies S7
and S8).
Topological constraints require that topo-

logical defects can only be created in sets
that are, collectively, topologically neutral.
Point-like defects in 2D active nematics thus
always nucleate as pairs of opposite winding
number (13). In 3D active nematics, an iso-
lated disclination loop as a whole has two
topological possibilities: It can either carry a
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Fig. 1. Assembling 3D active nematics and imaging their director field. (A) Schematic of the 3D active
nematic system: active stress–generating extensile microtubule bundles are dispersed in a passive colloidal
liquid crystal. (B) Active 3D nematic imaged with widefield fluorescent microscopy (left) and polarized
microscopy (right). Birefringence indicates local nematic order. (C) Multiview light sheet microscopy allows
for 3D imaging of millimeter-sized samples with single-bundle resolution. (D) Left: A 2D slice of fluorescent
microtubule bundles with highlighted elastic distortions. Right: Corresponding elastic distortion energy map, with
an overlaid nematic director field (red). (E) Three-dimensional elastic distortion map revealing the presence
of curvilinear rather than point-like singularities. An entangled network of lines coexists with isolated loops.
(F) Hybrid lattice Boltzmann simulations yield a similar structure of 3D active nematics. All experimental
samples consist of passive fd viruses at 25 mg/mL and microtubules at 1.33 mg/mL.

Fig. 2. Dynamics of experimentally
observed disclination loops. (A) Loop
nucleation from a defect-free region.
(B) Loop self-annihilation leaves
behind a defect-free nematic.
(C) Disclination line self-intersects,
reconnects, and emits a loop.
(D) Disclination loop intersects,
reconnects, and merges with a
disclination line. Each bounding
box is 30 × 30 × 38 mm. The time
interval between two pictures is 12 s.
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monopole charge or be topologically neutral,
depending on its director winding structure.
Because charged topological loops can only
appear in pairs, nucleation of isolated loops
as observed in our system implies their to-
pological neutrality.

To establish that the closed-loop distor-
tions are nematic disclination loops with no
net charge, we characterized their topolog-
ical structure. In 2D nematics, point-like dis-
clination defects are characterized by the
winding number or topological charge(s). The

lowest-energy disclinations have s = ±1/2,
which corresponds to a p rotation of the di-
rector field in the same sense or the oppo-
site sense, respectively, as the traversal of
any closed path encircling only the defect
of interest. In 3D nematics, point-like defects
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Fig. 3. Structure of disclinations lines, wedge-
twist, and pure-twist loops. (A) Disclination line
where a local +1/2 wedge winding continuously
transforms into a –1/2 wedge through an interme-
diate twist winding. The director field winds by p
about the rotation vector W (black arrows), which
makes angle b with the tangent t (orange arrow) and
is orthogonal to the director field everywhere in
each slice. For ±1/2 wedge windings, b = 0 and p.
b = p/2 indicates local twist winding. Reference
director no (brown) is held fixed. Color map indicates
angle b. (B) Wedge-twist loop where local winding as
reflected by angle b varies along the loop. W is
spatially uniform and forms an angle g = p/2 with
the loop’s normal, N. The winding in the four
illustrated planes corresponds to the profiles of the
same colors shown in (A), with dashed edges of
squares aligned to match the local director field.
Double-headed brown arrows indicate nout, the
director just outside the loop. (C) Pure-twist loop,
with W both uniformly parallel to loop normal N
(g = 0) and perpendicular to the tangent vector.
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Fig. 4. Structure of disclination loops in experiments and theory. (A) Two
orthogonal views of an experimental wedge-twist loop overlaid onto a fluo-
rescent image of the microtubules. The nematic director is shown in red.
(B and E) Structure of wedge-twist disclination loops in experiments and sim-
ulation. (C and F) Structure of pure-twist disclination loops from experiment
and simulation. Panels show the director field’s winding in the corresponding
cross-sections on the experimental loops. (D) Distribution of loop types

extracted from experiment (N = 268) and hybrid lattice Boltzmann simulations
(N = 94). |cos(g)| = 0 for wedge-twist loops and 1 for pure-twist loops.
Distributions of standard deviations of |cos(g)| are shown in fig. S3. The count
of simulated loops includes analysis of some loops at multiple time points
because we did not track loop identity in the complex flow dynamics. Coloring
of loops indicates the angle b. Scales and bounding boxes for the loops are
shown in fig. S4.
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from 2D systems are generalized to discli-
nation lines, where the director similarly
has a p winding, affording a broader variety
of director configurations. We define t to be
the disclination line’s local tangent unit
vector. The director field winds by p about
a direction specified by W, the rotation vec-
tor, which can make an arbitrary angle b
with t (27). If W points antiparallel or par-
allel to t, then the local director field rotates
in the plane orthogonal to t, assuming the
disclination profiles familiar from 2D nem-
atics. These configurations in which b is
equal to 0 or p are said to have a local wedge
winding (Fig. 3A). IfW is perpendicular to t,
then b = p/2 and the director forms a spa-
tially varying angle away from the orthog-
onal plane, locally creating what is called a
twist winding. Because Wmay point in any
direction relative to t, both W and b can
vary continuously along a disclination line
(movie S9).
For disclination lines forming loops, W

can vary continuously providing it returns
to its original orientation upon closure, lead-
ing to a broad range of possible winding
variations. A family of loops of particular
relevance to 3D active nematics is character-
ized by a spatially uniform W, interpolating
between two emblematic geometries: wedge-
twist and pure-twist loops. In the wedge-
twist loop, W makes an angle g = p/2 with the
loop normal N (Fig. 3B). As the disclination’s
tangent t rotates by 2p upon traveling around
the loop, the angle b varies from 0 (+1/2 wedge)
to p/2 (twist), to p (–1/2 wedge), then back
to p/2, and finally returning to 0 (movie S9)
(27, 28). The pure-twist loop has W uniformly
parallel to N, so g = 0 and W is perpendic-
ular to t (b = p/2, twist profile) at all points
on the loop (Fig. 3C) (27, 29). In this family
of loops, the director just outside the loop,
nout, is also uniform. The lack of winding of
both W and nout implies that both wedge-
twist and pure-twist loops are topologically
neutral (30, 31).
Experimental measurements of the director

field allowed us to fully characterize the topo-
logical structure of the disclination loops
(Fig. 4). Analysis of the director field indicated
that the distortion lines and loops have the p
winding indicative of disclinations (Fig. 1, E
and F), with continuous variation of b, which
indicates local winding. Furthermore, most of
the analyzed loops were well approximated by
the family of curves where W and nout varied
little along the loop circumferences. Categoriz-
ing loops according to their g values revealed
that the entire continuous family from wedge-
twist (Fig. 4, A and B) to pure-twist (Fig. 4C)
was represented, with the latter being more
prevalent (Fig. 4D). Structural analysis re-
vealed topological neutrality, as all 268 ex-
perimental loops and all 94 loops extracted

from hybrid lattice Boltzmann simulations
carried no charge. This demonstrates that
among many possible configurations, topo-
logically neutral loops are the dominant ex-
citation mode of 3D active nematics. The
same class of loop geometries also domi-
nated the dynamics in our numerical sim-
ulations of bulk 3D active nematics and in
confined active nematics (Fig. 4, E and F)
(25, 26, 32, 33). The phenomenology observed
is a direct consequence of activity-induced
flows and is insensitive to backflows induced
by reactive stresses. This conclusion is sup-
ported by the agreement of results from the
mechanical model considered in the hybrid
lattice Boltzmann method and the purely kin-
ematic Stokes method.
In 2D active nematics, self-amplifying bend

distortions give rise to the nucleation of a
pair of topological defects of opposite charge
(12–18). Nucleation of isolated, topologically
neutral wedge-twist loops are the 3D analog of
the 2D defect-creation process. Specifically, a
cross-section through the +1/2 and –1/2 wedge
profiles recalls unbinding of a pair of point
disclinations in 2D (Fig. 5, A and B). The +1/2
wedge profile typically appears on the side of
the growing bend distortion, oriented away
from the –1/2 wedge profile. Similarly, wedge-
twist loops with the +1/2 wedge profile ori-
ented inward toward the –1/2 wedge are
driven to shrink by active and passive stresses.
Unlike in 2D active nematics, after nucleation,

thewedge profiles remain bound to each other
through a disclination loop that includes
points with a local twist winding. It is possible
that some analyzed pure-twist loops have
evolved from wedge-twist loops by continu-
ous deformation of local winding character.
However, both simulations and experiments
showed cases of loop nucleation in nearly
pure-twist (g ≈ 0) geometries from previ-
ously defect-free regions. Local active nematic
stresses alone are not expected to drive growth
of a pure-twist loop (Fig. 5D). One possibility
is that long-range hydrodynamic flows build
up twist distortions that locally relax through
creation of a pure-twist loop (Fig. 5C and
movie S10).
By coupling a flow field to an orientational

order parameter with curvilinear topological
defects, 3D active nematics display dynamics
even more complex than the chaotic flows of
2D active systems. Combined with emerging
theoretical work (32, 33), the experimental
model system described herein offers a plat-
form with which to investigate the role of to-
pology, dimensionality, and material order
in the chaotic internally driven flows of ac-
tive soft matter. Furthermore, the use of a
multiview light sheet imaging technique dem-
onstrates its potential to unravel dynamical
processes in diverse nonequilibrium soft ma-
terials, such as relaxation of nematic liquid
crystals upon a quench or their deformation
under external shear flow (3, 34).
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Fig. 5. Nucleation mechanism of wedge-twist and pure-twist loops. (A) Nucleation and growth of a
wedge-twist disclination loop through a self-amplifying bend distortion. Purple rods represent the 2D director
field through the local ±1/2 wedge profiles. (B) Schematic of a wedge-twist loop and the director field in
the plane that intersects ±1/2 wedge profiles. (C) Pure-twist disclination loop nucleates and grows from
a local twist distortion (movie S10). Black arrows indicate the local buildup of the twist distortion.
Insert shows the top view of a growing twist disclination loop. (D) Schematic of a pure-twist loop and
the director field in the loop’s plane.
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