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We combine simulations and experiments to elucidate the molecular forces leading to the assembly of

two dimensional membrane-like structures composed of a one rod-length thick monolayer of aligned

rods from an immiscible suspension of hard rods and depleting polymers. Computer simulations

predict that monolayer membranes are thermodynamically stable above a critical rod aspect ratio and

below a critical depletion interaction length scale. Outside of these conditions alternative structures

such as stacked smectic columns or nematic droplets are thermodynamically stable. These predictions

are confirmed by subsequent experiments using a model system of virus rod-like molecules and non-

adsorbing polymer. Our work demonstrates that collective molecular protrusion fluctuations alone are

sufficient to stabilize membranes composed of homogenous rods with simple excluded volume

interactions.
1 Introduction

Colloidal membranes are two dimensional (2D) surfaces

composed of a one rod-length thick monolayer of aligned

nanorods. Equilibrium formation of such structures requires that

assembly readily propagate in two dimensions while being self-

limiting in the third. Previous approaches towards assembly of

colloidal membranes utilized chemically heterogeneous rods that

mimic the dichotomic structures of amphiphilic molecules

comprising conventional biological membranes.1 Here, we use

a combination of computer simulations and experiments to

demonstrate that structurally and chemically homogeneous hard

rods can form equilibrium monolayers in the presence of deple-

tant molecules, suggesting that geometry as well as chemical

heterogeneity can be used to design assembly pathways of self-

limited structures. Furthermore, we discover bounds on the

molecular parameters that support formation of equilibrium

membranes. These results have fundamental as well as practical

significance. Extensive research has shown that hard particle

fluids undergo entropy-driven assembly into a myriad of 3D

structures.2–5 Our work in combination with previous results

demonstrates that entropic forces can also drive formation of 2D

structures.6 From a practical perspective, equilibrium colloidal

membranes may enable manufacture of inexpensive and easily

scalable optoelectronic devices.7,7–11
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Our study is motivated by recent experiments on suspensions

of monodisperse rod-like colloidal viruses and the non-adsorbing

polymer dextran6 (Fig. 1). fd viruses alone approximate the

behavior of homogenous rods interacting with repulsive hard-

core interactions.12 The polymer induces an entropy-driven

attractive (depletion) potential between the rods, the strength

and range of which can be tuned by changing the polymer

concentration and radius of gyration respectively (Fig. 1A).13 At

high polymer concentrations viruses condense into smectic-like

stacks of 2D membranes (Fig. 1D).14 Decreasing polymer

concentration leads individual smectic monolayers (membranes)

within a stack to unbind from each other6 (Fig. 1C). The

resulting monolayer membranes are stable over months or longer

and can coalesce laterally to form structures that can be many

millimetres in diameter. As the polymer concentration is

decreased further past a second threshold, 2D membranes

become unstable and melt into 3D nematic liquid crystalline

droplets or tactoids (Fig. 1B).15 In comparison to extensive

computational and theoretical works that have explored the

properties of nematic tactoids (e.g.16–31) or the formation of

lamella or chains of spheres in a nematic or smectic background

of rods (e.g. ref. 32–47), analogous models of 2D colloidal

membranes are lacking.

At high polymer concentrations membrane stacking is driven

by the attractive depletion potential, the range of which is

determined by the radius of gyration of the depleting polymer.

Unbinding of membranes with decreasing polymer concentra-

tion indicates that the effective interaction energy between two

monolayers switches from attractive to repulsive. The primary

goal of this work is to understand the molecular origin of such

repulsive membrane-membrane interactions at intermediate

polymer concentrations. Experiments revealed significant
Soft Matter, 2012, 8, 707–714 | 707
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Fig. 1 Schematic illustrations and optical micrographs of the self-

assembled structures observed in suspensions of the filamentous virus fd

and non-adsorbing polymer.6 A) Non-adsorbing polymer induces effec-

tive attractive interactions between rods. B) DIC micrograph and sche-

matic of a nematic tactoid formed at low depletant concentration. C) At

intermediate depletant concentrations, rod-like viruses condense into

macroscopic one rod-length 2D fluid-like membranes. D) At high

depletant concentration, membranes stack on top of one another,

forming smectic filaments. All scale bars are 5mm.
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protrusions of rods from isolated colloidal membranes, the

magnitude of which could be tuned by changing the concentra-

tion of non-adsorbing polymer.6 In contrast, these fluctuations

were suppressed in stacked membranes. It was proposed that the

entropy penalty associated with suppressing protrusion fluctua-

tions of individual rods as two membranes approach leads to

repulsive interactions that stabilize isolated membranes under

moderate osmotic pressure.48 However, other plausible factors

could also stabilize membranes, including attractive interactions

between virus tips and depletant molecules, repulsions due to

bending (Helfrich) modes, or kinetic trapping of membrane

intermediates. To elucidate these issues, we develop a computa-

tional model which demonstrates that protrusion interactions

alone are sufficient to stabilize membranes in equilibrium. In

contrast to the previous model which considered only protru-

sions of isolated rods,6 our work indicates that collective

protrusion undulations dominate repulsive interactions between

membranes. Simulations predict that membranes are stable only

for a certain range of rod aspect ratios and depletant sizes; we

experimentally confirm the latter prediction.

This article is arranged as follows. In section 2 we present

a simple theoretical analysis of the forces between membranes

composed of hard particles. These estimates allow us to develop

a simplified computational model used to represent the fd virus

system described in section 3. The simulation results are pre-

sented section 4. Motivated by the specific predictions of
708 | Soft Matter, 2012, 8, 707–714
computer simulations, we present new experimental results

which confirm certain theoretical predictions in section 5. In

contrast to previous work,6 our experiments investigate the effect

of changing depletant size on the phase behavior. After

concluding in section 6 an additional calculation describing the

effects of semi-flexibility is given in the appendix. Additional

calculations describing the relative importance of collective and

individual protrusions and the height-height correlation spec-

trum of simulated membranes are presented in the ESI.†
2 Theoretical estimates of membrane-membrane
interactions

We begin with a theoretical estimate of the repulsive interactions

between two membranes, which will provide important justifi-

cation for an approximation of perfectly parallel cylinders used

in some of our simulations. All membrane-like structures,

including molecular lipid bilayers and much larger colloidal

membranes, have two generic repulsive interactions of distinct

origin which dominate at different separation length scales. At

large separations, slowly decaying low energy bending (Helfrich)

modes dominate.49 Helfrich and coworkers49–51 showed that as

two membranes approach each other within a mean surface

separation distance ds, undulation modes with wavelength l > ds
are suppressed by steric interactions. The suppression of

progressively smaller wavelength modes with decreasing sepa-

ration gives rise to a slowly decaying repulsive free energy

per area

gbendðdsÞ ¼ 3ðkBTÞ2
2p2kcd2

s

; (1)

with kc the membrane bending modulus and kBT the thermal

energy.

At small membrane separations another repulsive force arises

whose molecular origin is due to protrusions of molecules from

the membrane surface.52 These interactions are important at

separation distances comparable to the length scale at which

molecules fluctuate away from the membrane surface, which

depends on the size of the constituent particles. In molecular lipid

bilayers these interactions are relevant on Angstrom length

scales, while in colloidal membranes due to the length of the fd

rods they can be significant at much larger membrane-membrane

separations. While protrusion interactions were previously

analyzed in the context of individual rods protruding from

membranes,6 here we show that it is instead necessary to consider

collective protrusion undulations. The free energy due to

suppression of collective protrusion undulations yields the

exponentially decaying repulsive free energy per area

(see appendix B)

gprðdÞ ¼ B exp

�
� p

3

gd2
s

kBT

�
; (2)

with B a pre-factor of order 1 and g the surface tension.

The relative contributions to repulsive membrane-membrane

interactions from bending and protrusion modes (estimated from

eqn (1) and (2)) for parameters relevant to fd colloidal

membranes are shown in Fig. 2. We used the bending modulus

measured6 for fd membranes kc ¼ 150kBT which is large in
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 The contribution to membrane-membrane interaction free ener-

gies due to bending modes (eqn (1), dashed line) is compared to

the protrusion interaction (eqn (2), solid line) with surface tension

g ¼ 1/134kBTs
�2, and bending modulus kc ¼ 150kBT.
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comparison to kc z 10kBT for biological membranes, thus

further weakening Helfrich repulsions.x The experimentally

inaccessible surface tension is estimated from simulations

(described below) of colloidal membranes comprised of rods with

L ¼ 100 at osmotic pressure ps ¼ 0.06, for which isolated

membranes are stable. Using these experimentally relevant

parameters it follows that at experimentally relevant length scales

the strength of protrusion repulsions exceeds that of bending

modes by at least four orders of magnitude (Fig. 2). While the

exact ratio of the two contributions will depend on the value of

the experimental surface tension, our estimates make it clear that

the bending modes can be neglected due to the relatively short

range of the depletion interactions and the large bending

modulus of fd membranes. The relevant range of the membrane-

membrane surface separation ds is determined by the range of

attractive depletion interactions between a pair of membranes,

since the repulsive entropic repulsive force needs to overcome the

attractive depletion interaction in order to stabilize isolated

membranes.
Fig. 3 (left) Free energy per rod of an interacting membrane pair, f(d) �
f(N), plotted as a function of membrane surface separation d–L, shown

for three different depletant concentrations indicated by values of ps, with

sphere diameter d ¼ 1.5 and aspect ratio L ¼ 100. The dashed line is the

free energy calculated with orientational fluctuations at ps ¼ 0.06. (right)
3 Simulation model

We model the fd rods as hard spherocylinders with diameter s

and length L. The non-adsorbing polymer is represented by the

Asakura-Oosawa (AO) model, where polymers are treated as

ghost spheres of diameter d which freely interpenetrate one

another but behave as hard spheres when interacting with rods.53

Compared with an effective pair potential approach, this model

accounts for multi-rod interactions induced by polymers.54–57

The AOmodel is valid when the size of the colloid greatly exceeds

the polymer radius of gyration, L [ d,58–61 and provides semi-

quantitative agreement with experiments on rods in depleting

polymer.62 We perform Metropolis Monte Carlo (MC) with

periodic boundary conditions.63 The total number of rods Nr is

fixed, the sphere osmotic pressure ps is set by insertion/deletion

moves, and constant pressure is maintained in the xy plane by
x The large magnitude of the bending modulus can be understood to arise
from the large aspect ratio L z 100 of fd. In ref. 52 it is shown that the
bending modulus scales quadratically with membrane thickness; i.e., kc �
L2.

This journal is ª The Royal Society of Chemistry 2012
performing volume-change moves, while the box size is fixed in z

direction. Simulation results are reported with s as the unit of

length, kBT as the unit of energy, and kBTs
�3 as the unit of

pressure.

Based on the preeminence of protrusion modes (Fig. 2), which

do not involve rod tilting, in most simulations we restrict

spherocylinder orientations to be perfectly aligned along the z

direction. This simplification greatly enhances computational

efficiency, allowing us to extensively map the phase diagram as

a function of all relevant molecular parameters. Our approxi-

mation is justified by Fig. 2 and the fact that simulations in which

the fixed orientation constraint is relaxed predict similar phase

behavior and membrane-membrane interactions (e.g. Fig. 3).

Further simulation details are given in section 7 and the ESI†

section II.
4 Simulation results

Membrane-membrane interaction potential

We first use umbrella sampling63 to measure the free energy per

rod f, as a function of the separation between the centers of

mass of two membranes, d (Fig. 3). At low osmotic pressures

(e.g. ps ¼ 0.06), f(d) � f(N) has no attractive region sufficient to

overcome translational entropy; i.e., the stacking of disks is

suppressed and the isolated colloidal membrane phase is stable.

For larger osmotic pressures (ps T 0.08), the free energy has

a substantial minimum at finite membrane separations, signi-

fying that membranes will stack to form the smectic-like

columns. Consistent with these free energy results, unbiased

simulations for these parameters resulted in two membranes

which were respectively isolated and stacked at low and high

osmotic pressures, as shown in Fig. 3 (right). The free energy and

a representative snapshot are also shown for rods with orienta-

tional fluctuations at ps¼ 0.06. Note that isolated membranes are

stable and the interaction free energy is comparable to the case

with parallel rods; the repulsion is slightly weaker with orienta-

tional fluctuations because they decrease the equilibrium areal

rod density. This simulation result further justifies neglecting the

bending modes which involve bending of rods away from layer
Snapshots of two membranes from unbiased trajectories. (top)

Membranes attract at ps¼ 0.12. (middle, bottom) Snapshots for ps¼ 0.06

from simulations with (middle) parallel rods and (bottom) rods with

orientation fluctuations. In both cases membranes drift apart, indicative

of a repulsive potential.

Soft Matter, 2012, 8, 707–714 | 709
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normal and focus on simulations of perfectly aligned rods which

accurately account for protrusion fluctuations. We also note that

in the smectic-like phase, the equilibrium separation between

layers is approximately 10% of the rod length. This prediction is

consistent with our experimental observations of the smectic-like

phase, where the spacing between membranes is approximately

1 mm for rods with length 880 nm.
Phase diagram

We computed the equilibrium phase behavior as a function of

osmotic pressure, rod aspect ratio, and sphere diameter as

follows (Fig. 4). To identify the nematic-membrane phase

boundary, we performed separate unbiased simulations starting

from initial conditions in which (1) rods have random positions

and (2) rods are aligned in a flat layer. For all results shown, the

simulation outcomes were independent of initial conditions. To

identify the transition from membranes to smectic filaments,

a parameter set was considered to yield smectic layers if the total

free energy of the attractive basin in the membrane-membrane

interaction potential is sufficient to overcome the membrane

translational entropy

F #F0 ¼ kBT ln rmv0
expð�bFÞ ¼ Ð

f ðsÞ\0
ds expð�2bMf ðsÞÞ (3)

withM the number of rods in one membrane, v0 a standard state

volume, and rm amembrane concentration.We estimateM¼ 104

and rmn0 ¼ 10�8 from the experimental conditions; the location

of the phase boundary is not sensitive to the value of rmn0.

Fig. 4A illustrates the location of the equilibrium nematic

phase, isolated membranes, and smectic stacks as a function of

rod aspect ratio and depletant concentration. Interestingly, iso-

lated membranes are thermodynamically stable over a significant

span of osmotic pressures, but only for rods with aspect ratios

larger than L ¼ 30. Simulations with orientational fluctuations

also indicate a minimum aspect ratio for stable membranes,

which is somewhat larger. These predictions are consistent with

previous simulations of rods with L ¼ 5 that did not find
Fig. 4 Phase diagrams from simulation and experiment. Triangles: denote

isolated membranes, and - symbols correspond to smectic layers. (A),(B) Pha

and (A) aspect ratio L with sphere diameter (polymer radius of gyration) d ¼ 1

the isolated membrane/smectic and nematic/isolated membrane phase boun

isolated membrane boundary in (A), which is a theoretical prediction.64 (C) T

viruses and PEG/PEO polymers. The final concentration of viruses was fixed

varied to change osmotic pressure and polymer radius of gyration, Rg, respect

appear near the nematic and isolated membrane boundary are not shown.

710 | Soft Matter, 2012, 8, 707–714
equilibrium monolayers.55 The disappearance of the isolated

membrane phase for shorter rods arises from the interplay

between the geometry of rod-like particles and attractive deple-

tion interactions. Since the strength of the attractive interaction

between two rods scales linearly with rod length, increasing the

rod length lowers the osmotic pressure associated with the

nematic to membrane transition. On the other hand, the transi-

tion from isolated membranes to smectic filaments is determined

by the roughness of colloidal membranes, which is independent

of rod length but decreases with increasing depletant concen-

tration. Based on this argument, the location of the transition

between colloidal membranes and smectic filaments should be

independent of rod length, which is indeed observed for rod

lengths between 30 and 100. For longer rods the location of the

transition slightly decreases with increasing rod length, due to 2D

crystallization of rods within membranes (see the ESI† for details

of membrane crystallization and a determination that finite size

effects do not affect the results). Previous experiments have

shown that colloidal membranes are crystalline at high osmotic

pressures.15 At a critical rod length the nematic-membrane phase

boundary intersects the membrane-smectic filament phase

boundary, ending the equilibrium membrane phase.

Fig. 4B reveals that the depletant size d significantly influences

the topology of the phase diagram. For d > 1.7 colloidal

membranes are unstable at all osmotic pressures and there is

a direct transition from the nematic phase to smectic filaments. In

contrast, for d < 1.7 colloidal membranes are the equilibrium

phase at intermediate depletant concentrations between a low

osmotic pressure nematic phase and high osmotic pressure

smectic filament phase. Decreasing the depletant size further

below this critical value significantly expands the range of

osmotic pressures for which colloidal membranes are stable.

These results can be understood as follows. Increasing the

depletant size expands the effective range of the attractive

potential between two colloidal membranes, which in turn

requires longer range repulsive interactions to stabilize colloidal

membranes. For large enough depletant molecules, the repulsive

protrusion interactions are not sufficiently long-ranged to
parameters that lead to nematic configurations, + symbols correspond to

se diagrams determined from simulations for varying osmotic pressure ps
.5, and (B) varying sphere diameter with L ¼ 100. The solid lines identify

daries. They are fit by eye to simulation results except for the nematic/

he experimental phase diagram corresponding to (B) using mixtures of fd

at 5mg mL�1 and both polymer concentration and molecular weight were

ively. As noted in the text, chiral structures such as helical ribbons which

This journal is ª The Royal Society of Chemistry 2012
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overcome the attractive potential and colloidal membranes

become unstable for all osmotic pressures.
Fig. 6 Collective protrusions. The rod center distribution (protrusion

distribution) in isolated membranes at osmotic pressures ps¼ 0.06 (inner)

and ps ¼ 0.12 (outer) with L ¼ 100 and d ¼ 1.5. The dashed lines indicate

that the distributions approach �exp(1/4 p(d + s)2ps|z|) at large |z|.
Origins of monolayer stability

To understand the nature of the repulsive membrane-membrane

interactions, we determine their functional form fpr by sub-

tracting the depletion interaction fd from the measured

membrane-membrane free energy, fpr(ds) ¼ f(d) � fd(d), with

d the distance between the centers of mass of each membrane.

The depletion term is given by fd(d) ¼ pshvexids, where vex is the
volume excluded to spheres by rods, and h$id indicates an

ensemble average over configurations at a particular separation

d. Finally, the mean surface separation is given by ds ¼ d � L.

The calculations are presented in further detail in the ESI.† As

shown in Fig. 5, the measured repulsive interaction fpr is well

described by the functional form eqn (2) derived in section 2, with

fit values of g that are close to the surface tension extracted from

simulated height-height correlation spectra (SI Fig. S1). This

agreement establishes that the simulated membrane-membrane

repulsion primarily arises from collective protrusion undula-

tions; the distribution of protrusions is shown for typical

parameter values in Fig. 6. Further discussion of collective

protrusions is given in the ESI.
5 Experimental results

Simulations predict a critical depletant size above which isolated

membranes are unstable with respect to stacks of membranes for

all osmotic pressures. These predictions cannot be tested by the

previous experiments on fd-polymer suspensions6 because only

a single polymer radius of gyration was studied. We therefore

experimentally verify this prediction by performing new experi-

ments using a mixture of fd virus and non-adsorbing polymers

(for methods see the ESI†). As shown in Fig. 4, there is quali-

tative agreement between simulations and experiments in two

respects. First, colloidal membranes are unstable for depleting

polymer of large size; i.e. there is a direct transition from the

nematic phase to smectic filaments. In contrast, for smaller

polymer sizes, colloidal membranes are stable. Second, with

decreasing polymer size the osmotic pressure (polymer concen-

tration) at the transition from colloidal membranes to smectic

filaments increases. Several points need to be considered when
Fig. 5 The protrusion interaction potential is well-fit by the theory in

some parameter ranges. The dotted lines show the repulsive interaction

potential fpr measured from simulations and the solid lines correspond to

the best fit to the protrusion undulation potential given in the text with B

and g as fit parameters. Parameters are L ¼ 100, d ¼ 1.5 and (A) ps ¼
0.06, (B) ps ¼ 0.08 and the best fit values are (A) B ¼ 0.8, g�1 ¼ 213, (B)

B ¼ 0.9, g�1 ¼ 156.

This journal is ª The Royal Society of Chemistry 2012
comparing the experimental and computational phase diagrams.

First, there is a gap in the data between the polymer sizes cor-

responding to Rg ¼ 9.7 nm and Rg ¼ 17.9 nm due to limited

commercial availability of polymers with appropriate size.

Second, the transition pressure from the nematic/isotropic phase

to colloidal membranes increases precipitously for smaller

polymer sizes (Rg ( 5.2 nm). This is due to the deviations of the

fd system from an ideal model hard rod system due to its surface

charge. Making the depleting polymer size smaller than the

electrostatic repulsion length greatly reduces the strength of the

attractive interactions, requiring a higher depletant concentra-

tion to induce condensation of colloidal membranes.62 Third,

while the chirality of the individual viruses can influence the

assembly pathways, we have determined that the locations of

transitions in the experimental phase diagram are independent of

the chirality of the constituent rods. Fourth, based on an effec-

tive diameter of s ¼ 10.4 nm the predicted threshold depletant

radius is 9 nm, which is comparable to the experimental obser-

vation. The simulated osmotic pressures are given by 3.7 ps kPa,

an order of magnitude smaller than the experimental values.

Larger pressures are required to condense the rods experimen-

tally due to semiflexibility (see appendix A) among other factors.

6 Conclusions

In summary, this computational and experimental study

demonstrates for the first time that entropic forces are sufficient

to stabilize monolayer colloidal membranes at equilibrium. Our

simulations predict that the width of the isolated colloidal

membrane phase depends strongly on aspect ratio and depletant

size. While most previous simulations of hard rods considered

small aspect ratios, our prediction of a critical aspect ratio below

which the colloidal membrane phase disappears suggests that

large aspect ratios dramatically alter the phase behavior. The

predicted critical aspect ratio is only qualitative, but can be tested

by monitoring the phase behavior of depletant and rods with

varying lengths, as the prediction of a critical depletant size was

tested in experiments described here.

While it is well known that entropic forces generate repulsive

interactions between membranes,49–51 the entropic interactions

that we describe here are distinct from those characteristic of

lipid bilayers. Membranes composed of small molecule lipids

exhibit vigorous bending undulations due to their moderate

bending moduli while the surface roughness is limited to
Soft Matter, 2012, 8, 707–714 | 711
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molecular (�A) scales.52 Thus their repulsive interactions are

dominated by bending modes,49–51 albeit renormalized at short

wavelengths by molecular protrusions.48,52,65–67 In contrast, the

large aspect ratio of the fd virus (880 nm) enables molecular

protrusions and corresponding entropic repulsions on colloidal

scales. Second, the thickness of the colloidal membranes leads to

a large bending modulus which suppresses bending modes.

Consequently, protrusion interactions dominate on scales over

which the depletion force (with range comparable to the deple-

tant size �10 nm) studied here drives stacking of the colloidal

membranes. Because this phenomenon requires only a large

aspect ratio and a comparably small attractive force that drives

membrane formation, we anticipate that it will enable thermo-

dynamically stable membranes comprised of many other types of

nanorods.

7 Materials and methods

fd virus and PEG mixtures

The experimental conditions used here were similar to those

described previously.6 Suspensions of model rod-like particles,

the filamentous bacteriophage fd virus, were prepared in a buff-

ered solution with salt (100mM NaCl, 20mM Tris, pH ¼ 8.0).

Under these conditions, fd viruses behave as model hard rod-like

molecules, and hard-core repulsive interactions are the dominant

contributions to the internal energy. fd rods have a large aspect

ratio of approximately 130 (length of 880nm and diameter of

7nm), and undergo isotropic to nematic as well as nematic to

smectic phase transitions with increasing concentration. The rods

are slightly flexible, with a persistence length of 2.8mm.68 The

finite flexibility of the rods drives membrane condensation

conditions to higher depletant concentrations. In these studies,

polyethylene glycol (PEG) and polyethylene oxide were used as

the depletion agents to drive self-assembly. These polymers are

chemically identical, and have radii of gyration that scale with

molecular weight MW according to69 Rg(nm) ¼ 0.0215M0.583
W .

The corresponding osmotic pressure was calculated using values

obtained from previously published data.70

Simulation details

The number of rods in simulations ranges from 128 # Nr #

49920. For most free energy calculationsNr¼ 512, in simulations

that examine finite size effects 128 # Nr # 1152, in the simula-

tions with orientational fluctuations Nr ¼ 1560, and simulations

used to measure height-height correlations considered Nr ¼ 1024

and Nr ¼ 49920. The latter simulations were performed with rod

lengths of L ¼ 20 and L ¼ 100, for which there were approxi-

mately 6.3 � 105 and 1.3 � 105 spheres, respectively. For these

large simulations the Monte Carlo simulations were performed

in parallel via domain decomposition. For L ¼ 100 move

attempts in which rod orientations deviated by more than 0.4 rad

from the average rod orientation were rejected in order to enable

efficient domain decomposition. Such rejections were excep-

tionally rare since rods are highly ordered within membranes,

and system properties were not affected. No constraints were

applied to simulations with L ¼ 20.

For free energy calculations with orientational fluctuations

and large aspect ratios, rods are allowed to interact with multiple
712 | Soft Matter, 2012, 8, 707–714
periodic images of other rods (following ref. 2) and orientational

fluctuations beyond a maximum angle are rejected to prevent any

rod from interacting with itself. The maximum allowed angle is

well beyond typical orientational fluctuations since rods in

membranes are nearly aligned. Varying the maximal allowed

angle showed that the constraint did not affect the free energy.

Further details of the simulation implementation are given in

ESI† section II.
Appendix

A Effects of semiflexibility

While our computational model considers rigid rods, fd viruses

have a persistence length of lp ¼ 2.8mM which is comparable to

the contour length Lc ¼ 880 nm. Semiflexibility will affect

membrane formation in two major ways. First, rod bending

fluctuations will introduce an effective polydispersity, which

could modify the membrane stacking interaction. This possibility

will be investigated with future simulations that include poly-

dispersity. Second, bending fluctuations generate repulsive

interactions between rods which are analogous to the Helfrich

repulsions between membranes described above.71–75 These can

be estimated as follows. Consider a semiflexible rod in

a membrane, with the rod contour aligned with the membrane

normal. The effect of surrounding rods will be treated as a mean

field which creates a confining tube with diameter d2 ¼ 2=
ffiffiffi
3

p
r2d,

where r2d is the areal density of rods in the membrane. The

average size of fluctuations of the rod transverse to the tube axis

for a contour length l is calculated by Granek74 as

�
h2ðlÞ� ¼ 1

45

l3

lp
: (4)

We then calculate the deflection length71,72 xk as the contour

length over which hh2 (l)i ¼ d � s2 to give

xk ¼ (45)1/3l1/3p (d � s)2/3 (5)

where the rod diameter s accounts for rod excluded volume. The

free energy per rod fsemi is then given by the number of ‘deflec-

tions’ over the total contour length Lc

fsemi ¼ kBTLc/xk. (6)

To assess its importance, fsemi should be compared to the

osmotic free energy per rod driving association

fosm/LckBT z psDA ¼ r�1
2d � p(d/2 + s/2)2 (7)

with A as the area.

For typical parameters ps ¼ 0.1kBTs
�3, Lc ¼ 100s, and lp ¼

280s, minimizing fsemi + fosm with respect to areal density gives

r*2d ¼ 0.69s�2, f *semi/LckBT ¼ 0.1, and f *osm/LckBT ¼ �0.35

showing that semiflexibility renormalizes the effective strength of

the depletion interaction and thus larger osmotic pressures are

required to drive semiflexible rods into membranes as compared

to rigid rods (the experimental osmotic pressures are approxi-

mately 10 times larger than the simulated values). In the rigid rod

simulations for these parameters r2d z 0.8s�2.
This journal is ª The Royal Society of Chemistry 2012
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B Membrane-membrane interaction from protrusion

undulations

We adapt the arguments of Helfrich and Servuss49 to derive an

analogous expression for the case in which protrusion modes

dominate over bending modes as follows. We decompose the

undulations u(r) of an isolated membrane into modes, with the

amplitude uq of a mode with wavelength q given by the equi-

partition theorem D��uq��2E ¼ kBT

Agq2
(8)

with g the surface tension and A the membrane area. The mean

squared amplitude of undulations is then given by a sum over

modes, which we approximate with the integral

�
u2
� ¼ kBT

2pg

ðqmax

qmin

dq

q
(9)

with the cutoff wave vectors qmin ¼ pA�1/2 and qmax ¼ p/s with s

the particle diameter. The integral gives

�
u2
� ¼ kBT

2p
g ln

 
A1=2

s

!
: (10)

The repulsive interaction between two membranes results

because progressively more modes are suppressed as the

membranes approach. Following Helfrich49 we first consider

a single membrane between two parallel rigid plates, which are

respectively separated by +ds and�ds from the mean plane of the

membrane. The plates provide a hard wall interaction that

restricts undulations to

–ds < u(r) < ds. (11)

While the complete effect of this confinement on the mode

structure is complicated, restricting �ds < u(r0) < ds at one point

r0 results in

hu2(r0)i ¼ d2s/3 (12)

while exciting a single mode with wavelength q and then

restricting �ds < u(r) < ds for all r results in

hu2q(r)i ¼ d2s/12. (13)

The mean squared displacement of a membrane for which all

modes can be excited, but is confined to the interval eqn (11) for

all r is then approximated by the geometric mean49

u2(r) ¼ d2s/6. (14)

We then insert eqn (14) into eqn (10) and solve for A. The system

of one membrane between two rigid plates separated by distance

2ds is equivalent to two membranes with mean separation

between their surfaces ds and each with surface tension g/2.50 We

thus obtain

Acoll ¼ s2exp

�
p

3

gd2
s

kBT

	
; (15)

where Acoll gives the average area per membrane-membrane

collision. Assuming as usual that each collision results in a free
This journal is ª The Royal Society of Chemistry 2012
energy of kBT, the total interaction free energy is given by the

number of collisions, resulting in eqn (2) of the main text.

As shown in Fig. 5, the measured membrane-membrane

interaction potential is well fit by the functional form of eqn (2)

for a range of parameter values. We note however that the fits

require an effective value of the surface tension that is close to,

but consistently smaller than, the actual value extracted from

fluctuation correlation spectra. For example, with ps ¼ 0.06 the

measured value of surface tension is gs2 z 1/134 (ESI Fig. S1)

while the best fit value in Fig. 5 is gs2 ¼ 1/213. The small

discrepancies could arise from the crudity of the arguments

leading to eqn (14). Thus, we also adapted a different calculation

for the interactions due to bending modes, described in ref. 50

and chapter 6.6 of ref. 51, to the case in which protrusions

dominate. This calculation, which starts with the energy for

a system of membranes with smectic order, resulted in an

expression (valid for large ds)

ĝprðdÞ ¼
�
1

6

gd2

s2
þ 7p

144

kBT

s2

	
e�1=2 exp

"
� 4

p

gðd � LÞ2
kBT

#
: (16)

This expression has a decay length which is almost identical to

that of eqn (2), and fitting to the data yields similar estimates for

the surface tension, which supports the crude arguments given

above.

We thus consider two likely origins of the discrepancies

between apparent and measured surface tensions. First,

membrane undulations are a superposition of collective protru-

sion modes and smaller scale individual rod protrusions. In

particular, the distribution of protrusions (Fig. 6) is Gaussian at

small distances from the membrane surface, consistent with the

continuum model, but has an exponential tail consistent with

individual protrusions.48 It is possible that individual protrusions

enhance the range of the interaction and thus reduce the best fit

value of the surface tension. Second, the attractive depletion

interactions can increase the protrusion susceptibility as

membranes approach (i.e. expand the range of protrusions),

resulting in a lower apparent surface tension.
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