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Active materials are made from energy-consuming con-
stituents whose activity keeps the system out of equilib-
rium. Their study has deepened our understanding of 

self-organizing processes, both in vivo and in vitro1,2. Its founda-
tional examples include suspensions of microswimmers, in vitro 
assemblies of purified cellular components and the cell cytoskel-
eton3. Although notable progress has been made in deciphering 
the non-equilibrium physics of active materials by using experi-
ments and symmetry-based phenomenological theories4–6, there 
is far less understanding of how the large-scale dynamics actually 
devolves from microscopic activity. Such a theoretical framework  
would allow for rational design of new active materials and quan-
titative understanding of the cell cytoskeleton. We address this 
challenge for systems made of cytoskeletal polymers that are fully 
percolated by moving molecular motors. First, we describe the 
microscopic dynamics of a dense nematically aligned active gel 
made from purified microtubules and XCTK2 kinesin motors. 
Using photobleaching and second harmonic generation (SHG) 
microscopy, we show that the microtubule sliding speeds are 
independent of the local gel polarity and motor concentration, 
suggesting a robust internal coupling of the filamentous mate-
rial. To investigate this phenomenon, we introduce a framework 
for systematically deriving continuum theories of densely cross-
linked active gels from prescribed microscopic considerations. We  
use this framework to obtain a theory for the XCTK2–microtu-
bule system, which explains our experimental findings without  
adjustable parameters.

Many aspects of cell biology, including cell shape, motility and 
division, are driven by the cytoskeleton7. The cytoskeleton consists 
of polar filaments (mainly actin and microtubules) and the proteins 
that crosslink them and organize their behaviour. Molecular motors 
are active crosslinkers that use chemical energy to move filaments 

relative to each other. They play a central role in determining the 
architecture and dynamics of cytoskeletal structures such as the 
cell cortex and the spindle3. How large-scale behaviours of actively 
crosslinked networks emerge from the properties of their constitu-
ents is important for quantitative understanding of the cellular cyto-
skeleton8–10. The in vitro XCTK2–microtubule system that we study 
recapitulates the previously unexplained polarity-independent 
sliding motion of microtubules that was observed using speckle 
microscopy in Xenopus meiotic spindles11–13 and allows us to study 
how polarity-independent filament motion can emerge in actively 
crosslinked networks.

Phenomenological theories for actively crosslinked networks 
have been derived from conservation laws and symmetry con-
siderations1,4–6,14. They can reproduce the flow patterns observed 
in artificial15 and biological systems, such as the cell cortex8,16–18, 
and quantitatively explain some aspects of spindle structure and 
dynamics19. However, such theories do not address how the large-
scale behaviours of actively crosslinked networks emerge from the 
properties of their constituents. For this, an approach that derives 
macroscopic material laws from the properties of motors and fila-
ments is needed.

Previous efforts to derive continuum theories for active gels from 
microscopic interactions have considered sparsely crosslinked sys-
tems, in which individual motor-filament clusters are thought of as 
disconnected objects20–30. In contrast, actively crosslinked networks, 
such as the cytoskeleton3, are tightly coupled over length scales 
comparable to the system size and display behaviours different from 
those predicted for sparsely crosslinked active fluids. The rheologi-
cal properties of highly crosslinked gels have been studied using 
combinations of numerical and analytical techniques31–35. Here, we 
present an analytic framework for deriving continuum equations 
that capture their dynamics.
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Experiments
To study the behaviour of heavily crosslinked active gels, we created 
one from purified microtubules and 0.4 μM of XCTK2, a minus-
end directed kinesin-14 molecular motor capable of crosslinking 
and sliding aligned microtubules36. Fluorescently labelled tubulin 
and fluorescently labelled XCTK2 were mixed together, and then 
paclitaxel was added, which nucleated and stabilized the microtu-
bules. The sample was rapidly loaded into a 0.1 × 1 × 20 mm3 rectan-
gular microfluidic chamber (see Supplementary Information). The 
microtubule–motor mixture contracted within the first ~10 min and 
formed a macroscopic gel, with its microtubules nematically aligned 
parallel to the long axis of the microfluidic chamber. The sample 
remained in this macroscopically aligned state for ~1 h, after which 
the gel buckled and displayed complex dynamics for hours longer. 
Along the long axis, the boundaries of the material remained fric-
tionally pinned at the chamber’s ends throughout the experiment. 
In this study, we characterize the motions of microtubules in the 
macroscopically aligned state of the gel, before buckling occurred.

We used a femtosecond laser to photobleach microtubules in the 
aligned gels, near the centre of the chamber, and investigate their 
dynamics. We generated multiple bleach lines orthogonal to the 
nematic director (Fig. 1a). Each of the bleached lines split into two 
parallel lines, which moved apart along the direction of alignment 
(Fig. 1b, left), indicating that microtubules in the gel are continu-
ally sliding relative to each other. Control experiments confirmed 
that the laser bleached, but did not ablate, the microtubules (see 
Supplementary Information).

When a bleached line splits into two, the relative fluorescent 
intensity of the two new lines reflects the relative number of left-
moving and right-moving microtubules. Hence, the relative bleach 
intensity provides a measure of the polarity at the initial location of 
the bleach. We define the bleach polarity, Pbleach ¼ j I1�I2

I1þI2
j

I
, where I1 

and I2 are the bleach intensities of the two lines (see Supplementary 
Information). The speed at which the two lines move apart pro-
vides a measure of the speed of microtubule sliding. Along the same 
bleach line, some regions have very high polarity (Fig. 1b, orange, 
Pbleach = 0.63 ± 0.12), while others have very low polarity (Fig. 1b, 
blue, Pbleach = 0.08 ± 0.17). Despite this difference in polarity, the 
speed of sliding is very similar (Fig. 1b, right, compare orange and 
blue). We next performed experiments with varying motor con-
centrations. We measured the polarity and sliding speeds for four 
different motor concentrations (0.3, 0.4, 0.5 and 0.75 μM), each at 
many different locations, and found that the speed of microtubule 
sliding was independent of both polarity and motor concentration 
(Fig. 2). For motor concentrations below 0.3 μM, the microtubules 
did not contract and did not spontaneously align. For motor con-
centrations above 0.75 μM the gels buckled before settling down 
into an aligned state. The average speed that microtubules slid apart 
in these XCTK2 active gels was 18.6 ± 0.9 nm s−1, which is very close 
to the observed speed of 20 nm s−1 at which XCTK2 slides apart iso-
lated pairs of microtubules36.

Pbleach provides a local measure of the polarity of microtubule 
motion, that is, of the relative number of left-moving and right-
moving microtubules. We next sought to determine to what extent 
this polarity of microtubule motion is related to the physical polar-
ity of microtubules in the gel, that is, of the relative number of 
left-facing and right-facing microtubules. The physical polarity of 
microtubule arrays can be measured by simultaneous SHG, a non-
linear optical technique in which a signal can be produced from 
non-centrosymmetric materials, and two-photon microscopy of 
fluorescent microtubules. The local physical polarity is proportional 

to PSHG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ISHG=I2ρ

q

I
, where ISHG is the intensity measure from SHG 

and Iρ is the intensity measure from two-photon microscopy37. We 
simultaneously measured PSHG and Pbleach at multiple locations, and 
found that they are highly correlated (Fig. 2, inset). Therefore, in 

this gel, the local dynamic polarity of microtubule motion reflects 
the local physical polarity of microtubules, and the microtubule 
sliding speed is independent of the local polarity. This is reminis-
cent of the independence of microtubule sliding speed and polarity 
observed in spindles11–13.

The polarity-independent sliding speed of microtubules is dif-
ficult to reconcile with existing kinetic theories, which apply in the 
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Fig. 1 | Bleaching of aligned active gels reveals microtubule sliding speed. 
a, Aligned active gel after multi-line photobleaching. Scale bar, 20 μm.  
b, Left: higher magnification images of a bleached line taken at three 
different times. The bleached line with spatially varying polarity splits 
into two parallel lines as the microtubules slide apart. Solid blue and 
dashed orange shaded areas highlight regions of low and high polarity 
respectively. Right: intensity profiles of the high polarity (dashed 
orange, Pbleach = 0.63 ± 0.12 standard error) and low polarity (solid blue, 
Pbleach = 0.08 ± 0.17 standard error) regions. Despite the difference in 
polarity, the peaks move apart at nearly identical speeds. Scale bar, 5 μm. 
XCTK2 concentration is 0.4 μM.
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limit of dilute and sparsely crosslinked networks where the length 
scale over which filaments are interconnected is small compared to 
the system size. To illustrate the issue we describe previously pre-
sented arguments20,28. In the absence of external driving forces, the 
balance of forces yields ρ+f+ + ρ−f− = 0, where ρ± are the densities of 
microtubules pointing along the nematic axis of the system in the 
positive and negative directions, respectively, and f± are the forces 
acting on microtubules from their interactions with ∓ microtu-
bules, respectively. In a sparsely crosslinked system the force exerted 
by a motor on a microtubule is balanced only by the drag between 
the microtubule and the surrounding medium. Assuming that the 
medium is locally at rest, the velocity of microtubules, v±, will be 
given by v± = μf±, where μ is the microtubule mobility. A molecular 
motor crosslinking two microtubules moving at a speed V imposes 
v+ − v− = 2V. Taken together, this leads to v± = ∓V(1 ∓ P), where 
P ¼ ρþ�ρ�

ρþþρ�

I
 is the local microtubule polarity.

The argument described above predicts that the microtubule 
sliding velocity changes linearly with polarity, in conflict with our 
experimental measurements of reconstituted gels and spindle. 
Fundamentally, this prediction is a consequence of force balance 
in sparsely crosslinked systems: the mass fluxes of left moving and 
right moving microtubules locally balance because the momentum 
transfer in the system is dominated by fluid-mediated interac-
tions. Polarity-dependent sliding generalizes to more sophisticated 
versions of dilute theories that include effects such as long-range 
hydrodynamics (see Supplementary Information). The disagree-
ment between this theory and experiment suggests that microtu-
bule–XCTK2 gels may not be in a sparsely crosslinked regime. To 
examine this possibility, we quantified the microtubule density in 
our gel by measuring the initial molarity of components in our mix-
ture and then determined the percentage of components that were 
incorporated into the final gel via fluorescence microscopy. We esti-
mate a 5% volume fraction of polymerized microtubules in the gels, 
with 17 microtubules per μm3 (see Supplementary Information) 

and ~25 XCTK2 dimers bound to each microtubule. Given that 
microtubules are significantly longer than their average spacing, 
this result argues that these networks are heavily crosslinked by 
molecular motors—far from the dilute theory described above. 
Motivated by such considerations, we developed a model of heavily 
crosslinked microtubule networks.

Theory for densely crosslinked microtubule gels
In our theory, microtubules are characterized by their length L, 
velocities vi and orientations pi. The distribution of microtubule 
positions and orientations ψðx; pÞ ¼

P
i
δðx � xiÞδðp� piÞ

I

 obeys 

the Smoluchowski equation ∂tψ ¼ �∇  _xψð Þ � ∂p  _pψð Þ:
I

 The 
microtubules’ translational and rotational fluxes, _x xi; pið Þ ¼ vi

I
 and 

_p xi; pið Þ ¼ _pi
I

, respectively, can be determined from the conditions 
Fi = 0 and Ti = 0, which state that the total force Fi and torque Ti on 
each microtubule are zero.

The forces and torques applied to microtubules are generated by 
the molecular motors that actively crosslink them. Here, motors are 
characterized by their force–velocity relation, the distance R (the 
motor size) over which they can crosslink filaments, and the cross-
linking torque that they apply. The force that microtubule j exerts 
on microtubule i, via active crosslinks between xi + sipi and xj + sjpj 
(Fig. 3a), is given by Fijdsidsj and the total force on microtubule i is

Fi ¼
RL=2

�L=2

dsi
P
j

RL=2

�L=2

dsj
R
dpj

R
ΩðxiþsipiÞ

dx3

´ δðx � xj � sjpjÞδðp� pjÞFij
ð1Þ

where Ω(x) denotes a sphere of radius R centred at x (Fig. 3b). 
The force density can be written as the divergence of the network 
stress tensor Σ according to Kirkwood’s formula since Fij = −Fji (see 
Supplementary Information). The force balance of the network reads

∇  ΣðxÞ ¼
X

i

Fiδðx � xiÞ ¼ 0 ð2Þ

In a dense and highly crosslinked system, the motion of the fluid in 
which microtubules are suspended follows the microtubule motion 
and can be ignored (see Supplementary Information). The torque 
that crosslinkers between filaments i and j exert on filament i is 
given by Tijdsidsj with Tij = sipi × Fij + Γij, where Γij is the contribu-
tion stemming from an explicit crosslinker torque. The total torque 
Ti on microtubule i obeys an equation analogous to equation (1) 
(see Supplementary Information).

We model the XCTK2 motors by a force–velocity relation and 
a crosslinking torque density. The force density Fij(Δvij) exerted by 
motors depends on the velocity difference Δvij between their two 
motor heads. The crosslinking torque density Γij(pi, pj) depends on 
their orientations. For simplicity, we ignore the effects of non-uni-
form distributions of motors along microtubules. Furthermore, we 
do not account for the buildup of elastic strain in the motors, which 
is a good approximation on timescales that are large compared to 
motor binding/unbinding times. To linear order in Δvij

Fij ¼ �G  vi þ si _pi þ Vpi � ðvj þ sj _pj þ VpjÞ
h i

ð3Þ

where Vpi is the velocity of the motor relative to the microtubule 
it is bound to. This choice renders the force between two micro-
tubules dependent on their relative polarities. The linear response 
coefficient G is the motor friction and is in general a second rank 
tensor. In the following we choose G = γI for simplicity. Note that 
our results also hold for force velocity relations that are nonlinear in 
Δvij (see Supplementary Information). For the crosslinking torque 
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Fig. 2 | Microtubule sliding speed is independent of polarity and motor 
concentration. Local measurements (2 μm bins) from photobleaching 
of microtubule sliding speed and polarity, Pbleach, for different XCTK2 
concentrations. The shaded regions indicate the 95% confidence intervals 
of a linear regression for each motor concentration. Inset: correlation 
between local polarity Pbleach of microtubule motion measured by bleaching 
and local physical polarity PSHG of microtubules measured by SHG. The 
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corresponding 99% confidence interval.
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density we choose Γij = νpi × pj(pi ⋅ pj), which aligns microtubules,  
as would for example a torsional stiffness of the crosslinker. The 
coefficient ν characterizes the magnitude of this effect. Note  
that, dimensionally, Fij and Tij are forces and torques per area, 
respectively. It is straightforward to generalize our formulation to 
include motor activity that varies along the length of a filament, say 
by pausing at microtubule ends. This effect has been linked to net-
work contractions20,27,35.

We next derive a continuum theory for our system. We start by 
expanding equation (1) around the centre-of-mass positions xi and xj:

Fi ¼ �γL2
R

ΩðxiÞ
dx3ρðxÞ ðvi � vðxÞÞ þ Vðpi � PðxÞÞ½ 

�γ L4
12

R
ΩðxiÞ

dx3∇  ρðxÞðpi _pi þHðxÞÞ½ 
ð4Þ

Here we have assumed that the length scale a of gradients 
in the system is large compared to the microtubule length L 
and dropped terms with more than two spatial derivative (see 
Supplementary Information). We also introduced density 
ρðxÞ ¼

R
dpψðx; pÞ

I
, the polarity PðxÞ ¼ pih i

I
, the rotation rate ten-

sor HðxÞ ¼ pi _pih i
I

 and the velocity field vðxÞ ¼ vih i
I

, where the
 angled brackets ¼h i ¼ 1=ρ

P
i

R
dpδðx � xiÞδðp� piÞ¼

I
 denote 

local averaging. The force balance equation (2) becomes

∇  ΣðxÞ ¼ �γL2
R

ΩðxÞ
dy3ρðxÞρðyÞfvðyÞ � vðxÞ þ VðPðyÞ � PðxÞÞg

�γ L4
12

R
ΩðxÞ

dy3ρðxÞð∇  ρðyÞHðyÞð Þ þ ð∇ρðyÞÞ  HðxÞÞ

ð5Þ

Now, using R/a ≪ 1, we expand the integrand in equation (5) 
around x and perform the integration. In this way, for the gel stress 
tensor we obtain

Σ ¼ ηρ2ð∇v þ V∇PÞ � αρ2H ð6Þ

The coefficients η ¼ γ 4π
15 L

2R5

I
 and α ¼ γ 4π

36 L
4R3

I
 have dimensions of 

viscosity by density squared. The first term of the stress tensor in 
equation (6) is viscous-like (that is, it depends on ∇v) and captures 
long-ranged coupling between microtubules. In contrast to a dilute 
suspension theory, in which a viscous coupling would be induced 
by the fluid, here it is induced by the crosslinkers. For active cross-
linkers (V ≠ 0) the stress-free state is self-straining and the gel’s spon-
taneous strain rate is ∇v = −V∇P. The second term of equation (6)  
is generated by microtubules reorienting in the gel and is analo-
gous to a nematic alignment stress in liquid crystal theory. (We note 
that the ordering stress recovers the form derived for kinetic theo-
ries that approximate microtubule alignment by the Maier–Saupe 
free-energy26 when using equation (8).) From equation (4), using 
∇ ⋅ Σ = 0, we obtain the translational flux of microtubules:

vi � v ¼ �Vðpi � PÞ � L2

12
∇ρ
ρ

 ðpi _pi �HÞ ð7Þ

An analogous calculation for the torque balance (see Supplementary 
Information) yields

αpi ´ _pi ¼ ν̂pi ´ pi  Qð Þ ð8Þ

which is reminiscent of Maier–Saupe theory, where ν̂ ¼ νL2 4πR3

3
I

 
and where QðxÞ ¼ pipih i

I
 is the nematic tensor order parameter. 

The force balance ∇ ⋅ Σ = 0 and equations (6), (7) and (8) fully spec-
ify the system’s dynamics and can be used to evolve the distribution 
of microtubule positions and orientations.

Comparison and interpretation
We next use the above described theory to investigate microtu-
bule sliding in actively crosslinked networks. First we show that 
vi = −Vpi is the solution to an aligned network, which is the experi-
mentally observed behaviour. Consider a fully aligned gel with all 
pi ¼ ± ê
I

, for some unit orientation vector ê
I

. With this, equation 
(8) yields _pi ¼ 0

I
. We make the ansatz vi = −Vpi + C0 + xi × C1, where 

C0, C1 denote constant rates of translation and rotation, respectively. 
After evaluating v = 〈vi〉 and P = 〈pi〉, this micro-scale ansatz obeys 
equation (7) and yields a macro-scale spatially uniform stress ten-
sor satisfying Σ ≡ 0. It thus solves the force balance ∇ ⋅ Σ = 0 with 
stress free boundary conditions for any system geometry. To deter-
mine the constants C0 and C1 we impose that the gel be at rest in 
the lab frame, such that 

P
i
vi ¼ 0

I

 and 
P
i
xi ´ vi ¼ 0

I

, where we 

choose a coordinate system for which x = 0 is the system’s centre 
of mass. In our experiments, to good approximation 

P
i
pi ¼ 0

I

 and P
i
xi ´ pi ¼ 0

I

, that is the total number of left and right pointing micro-
tubules are approximately equal and polar domains are distributed 
homogeneously throughout the system. With this, we find vi = −Vpi.

This means that all microtubules translate with the motor veloc-
ity in the direction of their plus end. The microtubule velocities are 
independent of the local polarity and only depend on the speed of 
the kinesin motors. This phenomenon is explained by motors gen-
erating an active strain rate in regions of varying polarity. Thus, 
microtubules can slide past each other without stressing the material 
because ∇v = −V∇P; see equation (6). This surprising behaviour is 
a collective effect, as can easily be seen when considering the case 
of two isolated microtubules: two parallel microtubules linked by 
motors will be at rest in the lab frame, while two anti-parallel ones 

L

2R

a

b

xi + sipi

xi

xj xj + sjpj

L

X

Fig. 3 | Sketch of the microscopic model. a, Each microtubule (black solid 
arrow) is characterized by its centre of mass position x (white crosses) and 
its orientation p. Microtubules interact via motor molecules (zigzag line), 
which connect them at arclength positions si, sj (white circles) and walk 
towards their plus ends (white arrows). b, In the gel, crosslinkers of a test 
microtubule (red) explore all possible connections to other microtubules 
within reach (within the dashed capsule), that is, within a sphere of radius 
R around any position along the test microtubule.
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will move. Ultimately, the system consists of two inter-penetrating 
gels of microtubules of opposite polarity that push against each 
other, with each gel held together by viscous coupling. In contrast, 
for sparsely crosslinked networks, the mass fluxes of left-moving 
and right-moving microtubules locally balance, leading to a strong 
dependence of sliding speed on the local polarity.

Thus our theory makes a series of quantitative predictions. First, 
the microtubules’ sliding speed should be independent of the local 
network polarity. Second, the sliding velocity should be indepen-
dent of the motor concentration. We find both of these predictions 
to be accurate in our experiments (Fig. 2). Third, we predict the 
sliding speed is set by the speed of the motor itself. We measured 
speeds of 18.6 ± 0.9 nm s−1, which are comparable to the single-mol-
ecule motor speeds of XCTK2 (~20 nm s−1)36. Importantly, our pre-
dictions do not depend on adjustable parameters and arise directly 
from the form of equations (1) and (3). In turn, the form of equa-
tion (3) results from imposing that molecular motors act uniformly 
along the length of the microtubules, which is a good approxima-
tion for the XCTK2 motor at high enough densities36.

Polarity-independent sliding velocities are also observed in spin-
dles formed in Xenopus egg extracts. These spindles consist of an 
array of microtubules that are anti-parallel near the spindle centre 
and highly polar at the spindle poles37,38. Microtubules in these spin-
dles continually slide toward spindle poles, a motion believed to be 
driven by the molecular motor kinesin-511. Due to the symmetries 
observed in spindles38, 

P
i
vi ’ 0

I

 and 
P
i
xi ´ vi ’ 0

I

, as in our in vitro 

experiments. Because motors in spindles are abundant, we specu-
late that spindles might be self-straining, like the XCTK2–micro-
tubule gel presented here. If this were the case, the speed of sliding 
should be the speed of kinesin-5 itself and constant throughout the 
spindle. Very suggestively, this is exactly what has been observed. In 
spindles, and particularly so when dynein is inhibited, microtubules 
slide at a constant speed12,13 that is approximately equal to the speed 
at which kinesin-5 slides apart pairs of anti-parallel microtubules 
in vitro39. This suggests that, like our experimental system, spindles 
might consist of two inter-penetrating gels of microtubules of oppo-
site polarity. Mechanically, this puts them in a regime between poly-
mer suspensions and solid-like structures.

Our analytical framework can be used to investigate micro-
tubule networks crosslinked by different motors. For example, 
dyneins pause and accumulate at microtubule minus ends40. This  
motor dynamics can be implemented within our theory by modi-
fying equation (3), which gives rise to Q

I
 and ρ dependent active 

stresses (the calculation that predicts stresses for a generalized 
force–velocity curve will be presented in a subsequent publication). 
Such active stresses explain dynein-driven contractions of microtu-
bule networks27,35,40. Thus, the described theory generalizes previous 
models for network contractions27 by providing a rigorous frame-
work to predict how different motor properties give rise to different 
active stresses.

The self-straining state depends only on the balance between 
activity and viscous material response. Elastic deformations of 
either microtubules or motors do not play a role in this behaviour. 
Elastic, active networks can behave quite differently from the purely 
viscous systems31–33. For example, in elastic, active polymer gels, 
passive crosslinkers facilitate the buildup of contractile stresses34, 
which do not arise in the purely viscous limit. In our viscous theory, 
adding passive crosslinkers turns out to be exactly equivalent to 
slowing the motor. The interplay between viscous and elastic effects 
can be studied in our framework by augmenting equation (3) with 
elastic, history-dependent terms.

Many cytoskeletal networks are densely crosslinked. For exam-
ple, the contractility of acto-myosin networks has been explained 
as emerging from its heavily crosslinked nature33,34. The work pre-
sented here is an important step towards predicting the material 

properties of actively crosslinked materials from the properties of 
their constituents and will enable the design of novel dynamics from 
first principles.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0642-1.

Data availability
Figures 1 and 2 are based on microscopy data. The raw data are 
available from the authors upon reasonable request.
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