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Abstract

An overview is given of the experimental work on the liquid crystalline phase
behavior of semi-flexible viruses in an aqueous solution. We start by briefly
summarizing the theoretical work of Onsager which describes the isotropic-
nematic phase transitions of perfectly rigid rods. Extensions of the Onsager
theory to the case of semi-flexible and charged rods are presented. In the first
part of the review we focus on the phase behavior of a pure solution of semi-
flexible virus fd. With increasing concentration fd form isotropic, cholesteric
and smectic phase. In the limit of high ionic strength the agreement between
the Onsager theory and experiments on the isotropic-nematic phase of fd
virus is quantitative. The discrepancies at low ionic strength strongly hint at
a need to rigorously incorporate electrostatic interactions into phase behavior
of rigid rods. In the second part of the review we focus on the phase behavior
of mixtures of rods with either hard spheres or flexible polymers. Amongst
others we described a number of novel phases observed in these mixtures
such as a lamellar phase, columnar phase, colloidal membranes and surface
induced smectic phase. These structures are still very poorly understood and
there is a clear need for the theoretical work explaining their stability.

1.1
Introduction

The reasons physicists give for studying colloids are varied. Our initial mo-
tivation was that colloids can serve as model experimental systems to study
simple fluids because, with careful preparation, colloids approximate hard
particles. Numerous studies have investigated the phase behavior, structure,
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and macroscopic viscoelastic properties of suspensions of spherical colloids
(Poon and Pusey 1995). Far less studied have been colloids of anisotropic
shape, in spite of their long-recognized similarity to liquid crystals. Coun-
terintuitively, hard-rod fluids are theoretically simpler systems to understand
than hard spheres (Forsyth et al. 1978). This surprising fact was first rec-
ognized by Onsager (1949), who realized that the isotropic–nematic (I–N)
transition in the rod-like colloid tobacco mosaic virus (TMV) occurred at such
low concentrations that only two-body interactions were necessary in order
to quantitatively explain the I–N phase transition. In fact, in the limit of long
thin rods, Onsager’s theory becomes exact. This is in contrast to the theory
of phase transitions of hard spheres, for which no exact results exist (in three
dimensions).

For some years, the Complex Fluids Group at Brandeis has studied the
liquid-crystalline behavior of suspensions of TMV (Fraden et al. 1985; Hurd
et al. 1985; Wen and Meyer 1987; Oldenbourg et al. 1988; Fraden et al. 1989;
Meyer 1990; Fraden et al. 1993; Wang et al. 1994; Fraden 1995; Adams and
Fraden 1998) and filamentous phage fd (Tang and Fraden 1993; Tang and
Fraden 1995; Fraden 1995; Tang and Fraden 1996; Dogic and Fraden 1997;
Adams et al. 1998; Dogic et al. 2000; Dogic and Fraden 2001; Grelet and
Fraden 2003; Dogic 2003; Purdy et al. 2003; Purdy and Fraden 2004a; Purdy
and Fraden 2004b; Purdy et al. 2005). TMV is a beautiful colloidal rod (Kreibig
and Wetter 1980; Wetter 1985). It is completely rigid and forms isotropic,
nematic, smectic and colloidal crystalline phases. However, TMV is difficult to
work with. One must cultivate tobacco plants, infect them with virus, harvest
the crop, extract the virus – which takes months – and, in addition, all this
must be done with care to preserve the monodispersity of the virus. Physics
graduate students rebel at the thought of producing enough virus for a PhD
thesis! Without an abundant source of TMV, studies of its phase behavior are
impracticable.

So our laboratory switched from TMV to the semi-flexible bacteriophage
fd, which also forms several liquid-crystalline phases: isotropic, cholesteric,
and smectic, but not colloidal crystals. Because fd infects bacteria, growing
fd is relatively quick and easy. Furthermore, genetic engineering of fd is well
established, and we have produced mutants of varying length and charge.

This chapter describes the phase behavior of fd virus suspensions. First, we
present our results on fd alone. The results obtained up to 1995 are summa-
rized in another review article (Fraden 1995). While theory and experiment
are in agreement for the isotropic–cholesteric phase transition for suspen-
sions with high salt concentrations used to screen long-range electrostatic
repulsion, theoretical explanations of all other phases fail. We see a quantita-
tive discrepancy between theory and experiment for the nematic phase at low
ionic strength, and multiple quantitative and qualitative breakdowns of the
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theory of the smectic phase. Also, we have not even a clue of why a cholesteric
phase is observed in fd, but a nematic in a closely related species, pf1, which
has a nearly identical atomic structure (Grelet and Fraden 2003). Second, we
present results on mixtures of the viral rods with spherical colloids or spher-
ical polymers. Some of the phase behavior, such as depletion-induced phase
separation, was as anticipated. But an astounding array of unexpected results
was also observed. A laundry list includes microphase separation of rods and
spheres into columnar, cubic, and lamellar structure; isolated colloidal mem-
branes consisting of a sheet of rods and stabilized via protrusion forces; and
a quasi-two-dimensional smectic phase that exists on the isotropic–nematic
interface that plays a key role in phase separation kinetics. While originally we
were motivated to study virus suspensions because they are model systems
of simple fluids, now we are motivated by a spirit of exploration driven by
the expectation that more unexpected results will follow the ones described
below.

1.2
Entropy-Driven Ordering Within the Second Virial Approximation

In the first part of this chapter we briefly review the theoretical work describing
liquid-crystalline phase transitions in colloidal rods. This is not meant to be
exhaustive. For more detailed theoretical accounts, the reader is referred to
recent review articles (Stephen and Straley 1974; Odijk 1986; Vroege and
Lekkerkerker 1992) and the original article by Onsager (1949).

The majority of studies of the ordering transitions in hard-particle fluids
belong to a class of theories called density-functional theories (DFTs) (Hansen
and McDonald 1986). The simplest version of DFT takes into account the
interactions between particles at the level of second virial approximation. The
free energy of a hard-particle fluid is then

F

kBT
=
∫

V

dr ρ(r) ln[ρ(r)] − 1
2

∫
V

dr1

∫
V

dr2 ρ(r1)ρ(r2)β(r1, r2) (1.1)

where kB is the Boltzmann constant, T is the absolute temperature, ρ(r)
denotes the density of particles, r1 and r2 are vectors denoting the position
and/or orientation of two particular particles, and β(r1, r2) is the Meyer–
Meyer overlap function. Its value equals −1 if there is any overlap between
two hard particles located at r1 and r2; otherwise its value is equal to zero.
This expression has been used for a variety of cases to study entropy-induced
ordering in hard-particle fluids. Onsager (1949) was the first to show that
Eq. (1.1) is essentially exact for isotropic spherocylinders when L/Dsc → ∞,
where L is the length and Dsc is the diameter of the spherocylinder. As
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the aspect ratio of spherocylinders is increased, the third and higher virial
coefficients become negligible.

The second virial theory also predicts a stable smectic phase in a solution
of perfectly aligned spherocylinders as well as for spherocylinders with both
positional and orientational degrees of freedom (Hosino et al. 1979; Mulder
1987; van Roij et al. 1995; van der Schoot 1996). However, to describe the sus-
pensions quantitatively at the densities of the nematic–smectic (N–S) phase
transition, it is necessary to include higher virial coefficients in the free-energy
expression. For perfectly aligned spherocylinders, inclusion of the third and
fourth virial coefficients into the free energy results in theoretical predictions
for the N–S transitions that are in quantitative agreement with simulation
results. The calculations that consider ordering transitions using only second
virial coefficients are uncontrolled approximations, unless it can be shown
that higher virial coefficients are negligible, as is the case of the Onsager
treatment of the I–N phase transition.

In any hard-particle fluid, due to the simplicity of the interaction potential,
the energy of any allowed configuration is simply proportional tonkBT , withn
being the number density of particles. Due to this simple fact, the minimum
of the free energy of a hard-particle fluid F = E − ST = T (α − S) (α is
a constant) is equivalent to the maximum of the entropy. Furthermore, the
resulting phase diagram is temperature-independent (athermal) because both
α andS are independent of temperature. Ordering transitions in hard-particle
fluids are still possible because the expression for entropy, or equivalently
free energy, splits into two parts. The first integral in Eq. (1.1) is the ideal
part of the free energy and always attains a minimum value for the uniform
probability distribution ρ(r) = constant. Therefore, this contribution to the
total free energy always suppresses an ordering transition. The second integral
in Eq. (1.1) represents the second virial approximation for the interaction
free energy, which is proportional to the excluded volume, and under certain
circumstances is lower for an ordered state. Therefore, the interaction part of
the free energy drives the system toward ordering. The actual location of the
ordering transition is determined from the competition between the ideal and
interaction contributions to the total free energy. In this section, we briefly
review the theoretical description of phase transitions that can be described
using Eq. (1.1) for pure hard rods.

1.2.1
Isotropic–Nematic Phase Transition Within the Second Virial Approximation

The density functional of the sort shown in Eq. (1.1) was first used in a seminal
paper by Onsager (1949). He was seeking to explain the formation of the
nematic phase in solutions of rod-like tobacco mosaic virus (TMV), inorganic
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needles of vanadium pentoxide, and discs of bentonite. These transitions were
found to occur at very low volume fraction (Zocher 1925; Bawden et al. 1936).

In the Onsager theory, the system is assumed to be spatially uniform and
therefore it is assumed that ρ(r,Ω) = (N/V )f(Ω), where Ω is the solid angle
describing the orientation of the spherocylinder, N is the number of rods,
and V is the volume of the system. Since f(Ω) indicates the probability that
a rod is pointing at a solid angle Ω, it should be normalized as follows:

∫
f(Ω) dΩ = 1 (1.2)

Using this information, it is possible to recast Eq. (1.1) into an Onsager free-
energy functional for a solution of rod-like molecules:

F = log
(
N

V

)
+
∫
f(Ω) log[4πf(Ω)] dΩ

−1
2
N

V

∫ ∫
β(Ω,Ω′)f(Ω)f(Ω′) dΩ dΩ′ (1.3)

The function β(Ω,Ω′) is the excluded volume of the spherocylinder with
orientation Ω′ due to the presence of another spherocylinder with orientation
Ω. For two spherocylinders it is given by

β(Ω,Ω′) = β(γ) = −2L2Dsc sin γ − 2πD2
scL− 4

3πD3
sc (1.4)

where γ is the relative angle between the two spherocylinders. For sphero-
cylinders with a large aspect ratio, the first term in Eq. (1.4) dominates, and it
can be shown that the contribution of the other terms is of the same order as
the contribution of the third virial coefficient. Therefore, it is often assumed
that β(γ) = −2L2Dsc sin γ.

By using this approximation and variational calculus to minimize Eq. (1.3)
with respect to the distribution function f(Ω), one obtains the following in-
tegral equation:

log[4πf(θ)] = λ− 8ρ
π

∫
sin θ f(θ) dθ (1.5)

where ρ = 1
4πL2DscN/V and λ is a constant determined through normal-

ization of the constraint in Eq. (1.2). This integral equation cannot be solved
analytically. However, it has been solved using two different numerical proce-
dures, which yield almost identical results (Herzfeld et al. 1984; Lekkerkerker
et al. 1984). Once the probability distribution function is known, it is easy to
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calculate the nematic order parameter (S2) using the following relation:

S2 = 2π

∫ π

0
[ 32 cos θ − 1

2 ]f(θ) sin θ dθ (1.6)

In this equation we assume that the orientational distribution function is uni-
axial and therefore f(Ω) = f(θ), where θ is the angle between the orientation
of a specific rod and the nematic director. The value of the nematic order para-
meter varies between 0 and 1, with S2 = 0 describing a perfectly isotropic
solution and S2 = 1 describing a perfectly aligned nematic phase. Although
the numerical solution of Eq. (1.5) yields the most accurate results, it is also
possible to proceed from Eq. (1.3) by assuming a form of the orientational
distribution function, such as

f(α, cos θ) =
α cosh(α cos θ)

4π sinhα
(1.7)

Using this ansatz, first introduced by Onsager, and evaluating the integrals
for the case of hard rods, Onsager obtained an expression for the free energy
as a function of dimensionless concentration ρ and orientation parameter α:

F (α, ρ) = ρ log ρ+ σ(α)ρ+ ξ(α)ρ2

σ(α) = log
(
α coshα
4π sinhα

)
− 1 +

arctan(eα) − arctan(e−α)
sinhα

(1.8)

ξ(α) =
2I2(α)
sinh2 α

The advantage of assuming the probability distribution (1.7) is the analytical
expression for the free energy (1.8). The most convenient variable to formulate
the Onsager theory is the dimensionless concentration

ρ = Biso
2
N

V
=

π

4
L2Dsc

N

V
=

L

Dsc
φ (1.9)

where φ is the volume fraction of rods and Biso
2 = (π/4)L2Dsc is the second

virial coefficient for a suspension of hard rods in an isotropic solution. By
performing a stability analysis of the Onsager equation, Kayser and Raveche
(1978) found that the isotropic phase becomes unstable toward orientational
fluctuations when ρ = 4. It follows that, within the Onsager theory, the vol-
ume fraction of hard rods at the I–N transition scales as φ = 4Dsc/L. There-
fore, for long thin rods, the volume fraction of the I–N transition is small and
the virial theory, which is an expansion of the free energy in density, becomes



1.2 Entropy-Driven Ordering Within the Second Virial Approximation 7

accurate at the level of the second virial coefficient. Numerical calculations
of the second and third virial coefficients indicate that the Onsager theory is
quantitatively correct for rods with L/Dsc > 100 (Frenkel 1988).

However, the second-order transition predicted by the stability analysis is
preempted by a first-order phase transition. Minimizing the Onsager free en-
ergy with respect to the orientational distribution function numerically and
subsequently solving the coexistence equations yields the following concen-
tration of the coexisting isotropic and nematic phases:

ρiso = 3.289, ρnem = 4.192, S2 = 0.7922 (1.10)

These results were obtained by Herzfeld et al. (1984), Lekkerkerker et al.
(1984), and Chen (1993). The Onsager trial function (Eq. 1.7) yields the fol-
lowing coexistence concentrations:

ρiso = 3.339, ρnem = 4.487, S2 = 0.848 (1.11)

By comparing the accurate numerical result from Eq. (1.5) with the Onsager
approximation (Eq. 1.8), we observe a difference in both the coexistence con-
centrations at the I–N phase transition and the nematic order parameter (S2)
of the nematic phase.

1.2.2
Extension of Onsager Theory to Charged Rods

The Onsager theory outlined in the previous section can be extended to the
experimentally important case of charge-stabilized rods. The first treatment
of the I–N phase transition of charged rods can be found in the original paper
by Onsager (1949) and was elaborated by Stroobants et al. (1986). Besides
the hard-core repulsive interaction, charged rods have a long-range repulsive
interaction of the following form:

Uel(x)
kBT

=
A′ e−κ(x−Dsc)

sin γ
(1.12)

where x is the closest distance between two charged rods, A′ is the pro-
portionality constant obtained by solving the Poisson–Boltzmann equation,
κ−1 is the Debye screening length, and γ is the angle between two rods. In
the case of charged rods, there are contributions to the second virial coeffi-
cient from both the hard-core excluded-volume interaction and the long-range
electrostatic repulsion interaction. These two contributions can be calculated
separately. Integrating the interaction potential over a uniform orientational
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Fig. 1.1 The effective diameter for a charged rod calculated from Eq. (1.13)
for a range of ionic strengths. The hard-rod diameter Dbare = 66 Å
is that of the fd virus. Due to the highly nonlinear nature of the
Poisson–Boltzmann equation, the value of Deff barely changes as the
surface charge varies from 1 e−/Å to 10 e−/Å. Experiments indicate that
the surface charge is about 2 e−/Å at pH 8.0 (Zimmermann et al. 1986).
(Taken from Tang and Fraden, 1996).

distribution function that describes the isotropic phase, we obtain the follow-
ing expression for the second virial coefficient of charged rods (see Fig. 1.1):

Biso
2 = 1

4πL2Deff = 1
4πDL2 + 1

4πκ−1L2(lnA′ + CE + ln 2 − 1
2 ) (1.13)

where Deff = (lnA′ +CE + ln 2 − 1
2 )/κ. It follows that the thermodynamics

of charged rods in the isotropic suspension will be equivalent to the thermo-
dynamics of thicker hard rods with effective diameter Deff .

However, if the interaction potential is integrated over an anisotropic dis-
tribution function, then the relationship given by Eq. (1.13) is no longer exact.
The reason for this is that the electrostatic energy is lower for perpendicu-
lar rods than for parallel rods. Therefore, the charge effectively destabilizes
the nematic phase by shifting the I–N transition to higher concentrations
and reducing the order parameter of the nematic phase coexisting with the
isotropic phase. However, most biopolymers (including fd virus) are highly
charged, in which case it turns out that the electrostatic “twisting” effect is
insignificant compared to the excluded-volume interactions (Stroobants et al.
1986; Tang and Fraden 1995). Therefore, from now on we approximate Deff

in the nematic phase byDeff of the isotropic phase. This is reasonable for co-
existing phases, but we expect this approximation to get progressively worse
with increasing concentration.
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1.2.3
Extension of Onsager Theory to Semi-Flexible Rods

Semi-flexible rods are characterized by their persistence length, which is the
length along the contour of the chain after which the local tangents become
uncorrelated. The effect of semi-flexibility on the isotropic–nematic phase
transition was first considered by Khokhlov and Semenov (1982). For semi-
flexible rods, besides orientational and translational entropy, it is also nec-
essary to take into account the internal configurations of the semi-flexible
chain. This modifies the orientational entropy term in Eq. (1.1), while the
excluded-volume term between rod-like segments is still treated as in the
Onsager theory for rigid rods. The resulting expression for the free energy
has been solved analytically in the limit of almost rigid rods (P � L) and
very flexible rods (L � P ) (Khokhlov and Semenov 1981; Khokhlov and
Semenov 1982). It is possible to interpolate empirically between these two so-
lutions and obtain a numerical approximation for the configurational entropy
of rods with arbitrary persistence length, as was done by Hentschke (1990),
Odijk (1986), and DuPre and Yang (1991). This interpolated expression can be
combined with the Onsager approximation for the orientational distribution
to obtain analytical results for the I–N phase transition of semi-flexible rods.
In Fig. 1.2 these results are compared to accurate numerical solutions of the
Khokhlov–Semenov free energy due to Chen (1993).

From Fig. 1.2a we conclude that increasing flexibility destabilizes the ne-
matic phase by displacing the I–N transition to higher volume fractions. In-
creasing the flexibility also drastically reduces the concentration difference
between the coexisting isotropic and nematic phases (figure not shown) and
the order parameter of the nematic phase (Fig. 1.2b). The Onsager approxima-
tion (Eq. 1.7) for the orientational distribution function (ODF) qualitatively
agrees with the accurate numerical results due to Chen. It is important to
note that the agreement between these approximations for the location of the
phase transition (Fig. 1.2a) is much better than for the order parameter of the
coexisting nematic phases (Fig. 1.2b). This indicates that measuring the order
parameter is a more sensitive test of the theory for the I–N phase transition.

Chen compares his numerical solution to the analytical solution of Khokh-
lov and Semenov, who also use the Onsager approximation for the ODF. This
comparison in Chen’s paper seems much better than what is shown in Fig. 1.2.
The reason for this is that Khokhlov and Semenov, besides using the Onsager
approximation for the ODF, also approximate the excluded volume ξ(α) by
expanding it in powers of α. These two approximations fortuitously cancel
each other, and the final result seemingly agrees better with the numerical
solution.
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Fig. 1.2 (a) Concentration [ρiso =
(4/π)L2Dsc(N/V )] and (b) order
parameter (S2) of the nematic phase
coexisting with the isotropic phase as a
function of the flexibility of the particle
P = L/lp. The full lines are the exact
numerical results within the second virial
approximation due to Chen (1993), while

the dashed lines are results obtained
by using the Onsager approximation for
the orientational distribution function
(Eq. 1.7). In both parts the aspect ratio
of the rods is fixed at 100 and the per-
sistence length lp varies from infinity
to 25.

1.2.4
Extension of Onsager Theory to Rods With Finite Aspect Ratio
Using Scaled Particle Theory

The scaled particle theory (SPT) of hard rods was developed by Cotter and
Wacker (1978) and Cotter (1979). The main advantage of the scaled particle
theory is that it takes into account third and all higher virial coefficients in
an approximate way. Therefore, this theory should be more adequate at de-
scribing the data at higher concentration of rods or equivalently rods with
lower L/Dsc ratios. We note that the expression for the free energy reduces
to the Onsager second virial approximation for very long rods. For spherical
particles, the SPT free energy reduces to the Percus–Yevick free energy for
hard spheres.



1.2 Entropy-Driven Ordering Within the Second Virial Approximation 11

Fig. 1.3 The I–N coexistence concentra-
tions as a function of the aspect ratio
(L/Dsc) as predicted by the scaled
particle theory for rigid rods (full lines)
and as predicted by a theory that only
includes the second virial coefficient
(dashed lines). The circles are the results
of computer simulations (Bolhuis and

Frenkel 1997). The filled squares at low
L/Dsc represent results from the same
work but the coexistence width was too
narrow to be measured. The coexistence
is plotted in terms of real volume fraction
φ = 1

6πD3
sc + 1

4LD2
scπ, while the total

aspect ratio including the hemispheres
is L/Dsc + 1.

The scaled particle expression accounts for higher virial coefficients in an
approximate way. Comparing the SPT prediction for the I–N phase transi-
tion with the solution obtained through the second virial approximation pro-
vides a way to establish the range of L/Dsc ratios for which the second virial
approximation is quantitatively valid. The results are shown in Fig. 1.3. At
L/Dsc = 45 the second virial approximation yields I–N coexistence concen-
trations that are 10% different from the scaled particle result. We conclude
that for rods with L/Dsc > 75 the second virial approximation quantitatively
describes the I–N transitions in hard rods. Currently available computer sim-
ulation results agree very well with the scaled particle theory (Bolhuis and
Frenkel 1997; Kramer and Herzfeld 1998).

1.2.5
Nematic–Smectic Phase Transition Within the Second Virial Approximation

Here we review the interplay between the ideal and interaction contributions
to the free energy that are responsible for the formation of the smectic phase
in parallel hard rods. From the second virial approximation (Eq. 1.1), we can
easily find the free-energy difference between a weakly ordered smectic and
a uniform nematic state (Mulder 1987):

δF = Flayered − Funiform

= F (n+ a cos(kz)) − F (n) = n+ 8n2j0(k) (1.14)
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A positive free-energy difference δF (n, k) > 0 implies that at volume fraction
n and wavevector k the nematic phase has the lowest free energy and therefore
is the equilibrium phase. On the other hand, at values of nc and kc that satisfy
the equation δF (nc, kc) = 0 the system becomes unstable toward smectic
fluctuations since they do not cost any energy to create. We identify nc and
kc as the critical volume fraction and critical wavevector of the second-order
nematic–smectic phase transition.

It is important to note that the first term in Eq. (1.14) originates from the
ideal part of the free energy in Eq. (1.1), while the second term in Eq. (1.14)
originates from the interaction part of the free energy in Eq. (1.1). We observe
that the difference in the ideal part of the free energy between the layered and
uniform phase is always positive and given by δF ∝ n. Therefore, the ideal
part of the free energy always suppresses the ordering transition as expected.
On the other hand, the difference in the interaction part of the free energy
between the uniform and layered phase is given by δF ∝ n2j0(k). Since
this part of the free-energy difference scales as n2, for high enough volume
fraction of rods and for specific values of wavevector k this term is negative
and large enough to drive the system toward the smectic phase. Considering
the highly approximate nature of the theory, the conditions nc = 0.575 and
kc = 2π/1.398L obtained for the nematic–smectic phase transition compare
favorably to the results of the computer simulations of parallel rods nc =
0.43 and kc = 2π/1.27L (Frenkel et al. 1988). Inclusion of the third virial
coefficient brings the theoretical prediction for the N–S transition closer to
what is observed in simulations (Mulder 1987).

The above simple model suggests a physical picture of the excluded-volume
effects responsible for the formation of a smectic phase first introduced by
Wen and Meyer (1987). A spatially uniform nematic phase results in a very
inefficient packing of rods, as shown in Fig. 1.4a. In such a state the ideal

Fig. 1.4 A schematic illustration of the excluded-volume interaction
in a dense suspension of aligned rods for the case of (a) rigid rods and
(b) semi-flexible rods. (From Tkachenko, 1996).
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part of the free energy attains its minimum value while the interaction part
does not. The reason for this is that the nematic phase is under the constraint
of uniform packing, and thus the excluded volume between any two rods is
eight times the volume of a single rod, since rods are allowed to approach
each other from any direction. One way to decrease the excluded volume is
to impose a smectic-like periodic density modulation. Then the probability
of two rods approaching each other along their axial direction will decrease,
while the probability of sideways approach will increase. For example, in an
extreme case where the probability distribution of the centers of rods consists
of very sharp delta-like functions spaced at distances slightly longer than
the rod length, rods are allowed to approach each other only sideways and
overlap between the ends of the rods is completely forbidden. Consequently,
the excluded volume between two rods will be half the value of the excluded
volume for a uniform density distribution. For this simple reason, the value
of the interaction part of the free energy decreases with increasing order
in Eq. (1.14). The actual volume fraction of the ordering transition and the
resulting density distribution ρ(r) is therefore determined by the competition
between the ideal and interaction parts of the free energy given in expression
(1.1). The treatment of the nematic–smectic phase transition of the second
virial approximation was also extended to the case of rods with orientational
freedom (van Roij et al. 1995). In this case the calculation becomes much
more involved.

It is easy to extend the above argument to consider the influence of flexibility
on the nematic–smectic phase transition (Tkachenko 1996; van der Schoot
1996). Experimentally, it is found that flexibility acts to stabilize the nematic
phase and destabilize the smectic phase (Dogic and Fraden 1997). As was
first noticed by Tkachenko (1996), in the case of perfectly aligned rigid-rod
nematics the only way to fill the space created by the end of a rod is to place
another rod above it, as shown in Fig. 1.4a. In the case of a nematic solution of
semi-flexible rods, it is possible for other molecules to occupy space around
the end of a particular molecule by deflecting around its end, as shown in
Fig. 1.4b. This results in more efficient packing of semi-flexible rods in the
nematic state, which in turn leads to the suppression of the nematic–smectic
phase transition. This picture of the effect of flexibility on the nematic–smectic
phase transition has been confirmed using computer simulations (Polson
1997).

1.2.6
Phase Behavior of a Binary Mixture of Hard Particles

Recently the second virial approximation has also been extended to study
ordering and demixing transitions in binary mixtures of hard rods (Koda and
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Kimura 1994; Cui and Cheng 1994; van Roij 1994; Sear and Jackson 1995;
Sear and Mulder 1996; van Roij 1996; van Roij and Mulder 1996; Dijkstra
and van Roij 1997; van Roij et al. 1998). In many of these cases it is not
obvious if terminating the free-energy expansions at a second virial level is
sufficient to describe the phase diagram of a binary mixture. For example, it
was recently shown that, although Onsager theory quantitatively describes the
I–N phase transitions of rods, it fails to predict even the qualitative features of
a binary mixture of rods with two different diameters (Purdy et al. 2005). In
other cases, such as a mixture of perfectly aligned spherocylinders and hard
spheres, the second virial theory predicts the right qualitative features, as has
been verified by computer simulations for the lamellar phase, but fails to
describe the columnar phase (Adams et al. 1998). Expressions for the stability
matrix for a binary mixture of parallel spherocylinders and spheres are given
in Koda et al. (1996) and Dogic et al. (2000).

1.3
Experimental Phase Diagram of an fd Virus Suspension

Theory and simulation indicate that, with increasing concentration, rod-like
particles will form isotropic, nematic, and smectic phases (Hosino et al. 1979;
Mulder 1987; Wen and Meyer 1987; Frenkel et al. 1988; Bolhuis and Frenkel
1997). The columnar phase turns out to be metastable with respect to the
smectic phase for all aspect ratios and rod concentrations (Bolhuis and Frenkel
1997). So far, the only experimental systems whose phase behavior agrees
with theoretical predictions are colloidal suspensions of the viruses fd, pf1,
and TMV, and inorganic β-FeOOH rods (Maeda and Maeda 2003). This is due
to the fact that Nature makes all viruses identical to each other. This results in
a colloidal suspension of very high monodispersity, much higher than what
can be achieved with current synthetic methods. Recently, using a combina-
tion of recombinant DNA technology and traditional chemical methods, it
has been possible to prepare monodisperse poly(benzyl l-glutamate) (PBLG)
polymers. Although these polymers are not available in large quantities, they
were reported to form a smectic phase (Yu et al. 1997). This is a potentially
powerful technique to create novel liquid crystals. While the present chap-
ter focusses on the fundamental aspects of the phase behavior of rods and
rod–sphere mixtures, individual viruses and virus assemblies might become
technologically useful materials. In this respect, the recent work by Belcher’s
group seems promising (Lee et al. 2002).

In this chapter we focus on the phase behavior of the rod-like bacterio-
phage fd and its closely related M13. The phase behavior of another class of
anisotropic colloids composed of minerals has recently been reviewed else-
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where (Gabriel and Davidson 2003). The phase behavior of polymeric liquid
crystals such as PBLG is reviewed in Sato and Teramoto (1994). Historically,
the first observation of the nematic liquid-crystalline phase of fd was reported
in the study by Lapointe and Marvin (1973). Shortly thereafter a smectic phase
was also reported in a little noticed paper (Booy and Fowler 1985).

We note that fd forms a cholesteric instead of a nematic phase. Cholesteric
and nematic phases are locally identical to each other. It often takes many days
after sample preparation for the fd solution to form a fully twisted cholesteric
phase. This indicates that the free-energy difference between these two struc-
tures is very small. Therefore, we expect that the Onsager theory equally well
describes the isotropic–nematic and isotropic–cholesteric phase transitions.
In this chapter we use the terms “nematic” and “cholesteric” interchange-
ably depending on the particular context. Often, when confined to small
droplets, such as tactoids observed at the isotropic–cholesteric coexistence,
the cholesteric phase is unable to develop and the sample remains nematic.

1.3.1
Properties and Preparation of Filamentous Bacteriophage

The structure of the bacteriophage fd is very simple, with a self-assembled
hollow cylindrical shell composed of roughly 2800 copies of a single coat
protein pVIII. A single circular strand of DNA is enclosed within this hollow
shell. The length of the whole virus is determined by the length of the DNA.
The ends of the assembly are covered with end-capping proteins, which are
different from the major coat protein pVIII. In addition, the two ends are
different from one another, which makes fd a polar colloid. This characteristic
can be used to label each end selectively (Lee et al. 2002).

The physical characteristics of the fd virus are a contour length of 880 nm,
bare diameter of 6.6 nm, and aspect ratio L/Dsc ≈ 130. The semi-flexibility
of the virus is characterized by the persistence length, lp = 2.2 µm, which
has been reported to change with temperature (Tang and Fraden 1996). The
colloidal stability of the virus is preserved due to the fact that it has a very
high negative surface charge at pH 8.0 (Zimmermann et al. 1986). For a
more comprehensive list of most of the known physical constants of fd, the
reader is referred to the review article by Fraden (1995).

There are well-established methods for growing bacteriophage fd and close-
ly related M13 (Maniatis et al. 2000; Dogic and Fraden 2001). In brief, one first
grows a large quantity of Escherichia coli host. Once the host strain reaches
log phase, it is infected with viruses at a well-defined multiplicity of infec-
tion (MOI) and the culture is grown for an additional eight hours. The bac-
terium is separated from the culture by centrifugation at low speed, and the
virus in the supernatant is concentrated by adding a neutral polymer, such
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as poly(ethylene glycol) (PEG, molecular weight Mw = 8000), which acts as
a depleting agent. In principle, it is possible to purify the virus further using
a cumbersome CsCl gradient centrifugation step. In practice, we found that
a two-step sequence of low-speed and high-speed centrifugation produces fd
virus of sufficient purity for most of our experiments. Once grown, fd should
be kept in a low-ionic-strength buffer at 4◦C. Under these conditions, the
solution should be stable for at least a year, although it is difficult to prevent
microbial growth over such a long time period even in the presence of sodium
azide. Therefore, before use of the virus, we dialyze it against fresh buffer and
spin-down aggregates and bacterial debris using a low-speed centrifugation
step. The usual yields are about 15–20 mg per liter of infected E. coli culture.

There is a tendency for all viruses to form a multimeric structure with a
contour length that is an integer multiple of the length of wild-type fd. We
have found that it is important to choose the appropriate E. coli host strain
in order to reduce the number of multimers. Although recA+ strains such
as JM101 grow faster and produce higher yields of virus, we found that these
hosts have a tendency to form dimer and multimer viruses. These can easily
be identified once the viruses are labeled and visualized using fluorescence
microscopy. Viruses purified from recA+ host form smectic phase at different
concentrations when compared to viruses purified form recA− strains such
as Xl1-Blue. In addition, many other structures, such as the lamellar phase
described in Section 1.6, are not observed in an fd virus grown in recA+

strains. This is presumably due to increased polydispersity of the virus.
It is difficult to assess the polydispersity of the virus. It has a pronounced

tendency to break or aggregate during preparation of grids for electron mi-
croscopy. It is possible to run agarose gel electrophoresis on whole viruses
that are stained with Commassie Blue protein stain (Griess et al. 1990). How-
ever, sometimes longer fd does not easily enter the gels. It is also possible to
strip the virus of its protein and run DNA gel electrophoresis, which is subse-
quently stained with ethidium bromide. Recently, we have prepared fd viruses
labeled with the fluorescent dye Alexa 488 (Molecular Probes), which appear
very bright when viewed via fluorescence microscopy. These could be used
to quantify the polydispersity of the virus. When labeled at very high fraction
with Alexa 488 (Molecular Probes) dye, we do not observe any aggregation over
a period of a year. In contrast, if the viruses are labeled with larger and more
hydrophobic dyes, such as tetramethyl rhodamine (TAMRA), they aggregate
into bundles over a period of days. With the proper use of anti-bleaching
solution, it is possible to observe Alexa 488-labeled viruses continuously for
5–10 min under full illumination with a 100 W mercury lamp. Figure 1.5
shows a fluorescent microscopy image of Alexa 488-labeled recA+ fd. It is
easy to observe a number of fd with a contour length much longer than that
of wild-type fd.
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Fig. 1.5 (a) Electron microscope image
of a bacteriophage fd. The contour length
of the virus corresponds to 0.9 µm.
(b) Image of a dilute isotropic solution of
fd confined to a chamber of approximately
1 µm thickness. The presence of fd with
much larger contour length than the wild
type is easily seen. The fd was grown in

recA+ strain (JM101) and labeled with
Alexa 488 (Molecular Probes). The image
was taken with a fluorescent microscope
equipped with a cooled charge-coupled
device (CCD) camera (CoolSnap HQ,
Roper Scientific). The scale bar indicates
10 µm. (From Model and Russel, 1988).

All the available data point to the fact that the contour length of fd is deter-
mined by the size of its DNA. Therefore, it is possible to alter the length of
the fd by simply adding additional DNA into the fd genome using standard
recombinant DNA techniques. A few decades ago fd with different contour
lengths were genetically engineered and used to study the rotational diffusion
of rod-like colloids with varying aspect ratio (Maguire et al. 1980). However,
this potentially powerful method was not pursued any further. Using similar
methods, mutants up to 5 µm long have been described in the biological lit-
erature (Herrmann et al. 1980). We have tried to reproduce this method, but
have found that, during a large-scale preparation involving many generations
of bacterial division, foreign DNA is easily expelled. The resulting culture
quickly reverts back to wild-type fd. We have had more success in creating
mutant fd using the phagemid methods, as described in detail in Sambrook
et al. (1989). The resulting fd are sufficiently monodisperse to form a smectic
phase, as shown in Fig. 1.16. For more details, the reader is referred to Dogic
and Fraden (2001).
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1.3.2
Isotropic–Cholesteric Phase Transition in fd Virus Suspensions

Due to the entropic nature of the fd suspension, the only variable that deter-
mines the phase behavior is the density of the constituent rods. Therefore,
with increasing fd concentration, an isotropic suspension of fd undergoes a
first-order phase transition to the nematic/cholesteric phase. It follows that
the density of the cholesteric phase is higher than that of the isotropic phase in
a coexisting sample. The denser cholesteric phase slowly sediments to the bot-
tom of the sample container, resulting in a macroscopically phase-separated
sample (Fig. 1.6).

Recently we compared the experimental results of the isotropic–cholesteric
(I–Ch) transition quantitatively to the predictions of the Onsager theory (Tang
and Fraden 1996; Purdy and Fraden 2004a). To accomplish this, it is necessary
to take into account both the charge and the flexibility of an fd virus. It is
possible to describe the thermodynamic behavior of a dilute suspension of
charged rods using the concept of effective diameter, Deff , as explained in
Section 1.2.2, where Deff for fd is plotted for three different surface charges
(Fig. 1.1). Due to the nonlinear nature of the Poisson–Boltzmann equation,
changing the surface charge by an order of magnitude has minimal effect

Fig. 1.6 The bulk phase separation be-
tween isotropic and nematic phases
observed in a TMV suspension. The im-
age on the left is taken with white light,
while the image on the right is taken
between crossed polarizers. Since the
difference in density between the nematic
and isotropic phases can be up to 30%
over a period of days, the nematic phase

sediments to the bottom. The phase
diagram for TMV suspension is shown in
Fraden et al. (1989). Identical bulk phase
separation is observed in fd suspension.
By measuring the concentration of the
virus in coexisting phases, it is possible
to determine a phase diagram such as
the one shown in Fig. 1.7.
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Fig. 1.7 The I–Ch coexistence concentra-
tions measured in an aqueous suspen-
sion of fd virus as a function of the ionic
strength (Tang and Fraden 1995). The full
lines are the numerical solution of Chen
(1993) for the I–Ch coexistence, which
treats excluded-volume interactions at the
second virial level while the orientational
distribution function is calculated numer-

ically. The dashed lines are the scaled
particle theory solution for the I–Ch co-
existence in which all virial coefficients
are included in an approximate way and
the orientational distribution function has
an approximate form given by Eq. (1.7).
The scale on the right-hand side indicates
the effective diameter for a given ionic
strength. (From Tang and Fraden, 1996).

on the resulting Deff . The flexibility is included according to the prescription
given by Khokhlov and Semenov, and discussed in more detail in Section 1.2.3.

Figure 1.7 shows that, with increasing ionic strength, the location of the
I–Ch phase transition shifts to higher concentrations. However, increasing
ionic strength increasesL/Deff , which in Onsager theory should decrease the
volume fraction of the rods at the I–N transition. The discrepancy can easily be
understood if one looks at the condition for instability of the isotropic phase:
(4/π)L2Deff(N/V ) = 4. The concentration in Fig. 1.7 is not proportional to
the effective volume fraction, but to the number density of the virus. If Deff

is decreased with the length of the rod remaining constant, it follows that
the number density of the virus at the transition has to increase so that the
condition for the nematic/cholesteric instability is still satisfied. The experi-
mental data points are compared to the numerical solution of Chen (1993),
who approximates the excluded-volume interaction by the second virial coef-
ficient and treats the ODF in an accurate numerical way. We have also plotted
the result of a theory in which higher virial coefficients have been taken into
account within the scaled particle theory while the orientational degrees of
a semi-flexible polymer confined by the nematic field is approximated using
the approximation described in Section 1.2.3.

At first sight the agreement between the theory due to Chen and the ex-
periment as shown in Fig. 1.7 is quite good. However, there is reason to
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believe that this agreement is fortuitous at low ionic strength. For example,
at 1 mM ionic strength, Deff ≈ 60 nm, which results in the aspect ratio
L/Deff ≈ 15. Figure 1.3 clearly shows that for these small aspect ratios third
and higher virial coefficients cannot be ignored. Indeed, the results of the
scaled particle theory, which include these higher coefficients, predict that
the I–N(Ch) transition is located at significantly lower concentration than
that found by the experiments and Chen’s theory. The agreement between
the scaled particle theory, experiments, and Chen’s theory is much better at
high ionic strength where the effective aspect ratio is large (at 100 mM ionic
strength, L/Deff ≈ 83), and therefore the excluded-volume interactions are
more accurately approximated by the second virial coefficient.

We note that the results from the scaled particle theory shown in Fig. 1.7
should also be treated with a degree of skepticism. To compare the scaled
particle theory with experiments on charged rods, we use the effective di-
ameter of the rod. However, the concept of Deff introduced in Eq. (1.13) is
only rigorously justified for conditions for which the second virial coefficient
is quantitatively valid. There has been a recent theoretical attempt to extend
the scaled particle theory to charged particles (Kramer and Herzfeld 1999;
Kramer and Herzfeld 2000). Unfortunately, this theory does not extrapolate
to Onsager theory for dilute rods, in contrast to the scaled particle theory for
hard rods. We also note that the twisting factor ignored in our treatment of
Deff for fd is strongest at low ionic strength (Stroobants et al. 1986). This effect
displaces the I–N(Ch) transition to higher densities.

The effect of the contour length of M13 virus on the I–Ch phase transitions
has also been measured (Purdy and Fraden 2004a). Mutant viruses of various
contour lengths have been prepared using molecular cloning as described in
Section 1.3.1. Figure 1.8 shows the location of the I–Ch phase transition as a
function of contour length in terms of the dimensionless concentration beffci.
The Onsager theory predicts that the location of the I–Ch will occur when
beffci ≈ 4. In these units the location of the phase transition is independent
of the aspect ratio of the rods, as indicated by the dashed line. Including
finite flexibility significantly shifts the location of the I–Ch phase transition to
higher concentration, as indicated by the full line. The I–Ch phase transition
at high ionic strength, indicated by filled triangles, agrees well with these
predictions. However, as the ionic strength decreases to 10 mM, there is a
significant deviation between experiment and theory.

Another important parameter that characterizes the I–Ch phase transition
is the order parameter of the nematic/cholesteric phase at coexistence. Fig-
ure 1.9 shows the behavior of the nematic order parameter as a function of
both the contour length and the ionic strength. The order parameter can be
extracted from birefringence measurements once the birefringence per parti-
cle is measure using X-ray scattering as described in Section 1.3.5 and Purdy




