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The behavior of a colloidal suspension of rodlike fd viruses in the nematic phase, subjected to steady
state and transient shear flows, is studied. The monodisperse nature of these rods combined with relatively
small textural contribution to the overall stress make this a suitable model system to investigate the effects
of flow on the nonequilibrium phase diagram. Transient rheological experiments are used to determine
the critical shear rates at which director tumbling, wagging, and flow-aligning occurs. The present model
system enables us to study the effect of rod concentration on these transitions. The results are in
quantitatively agreement with the Doi-Edwards-Hess model. Moreover, we observe that there is a strong
connection between the dynamic transitions and structure formation, which is not incorporated in theory.

I. Introduction

When subjected to shear flow, liquid crystals can exhibit
a variety of surprising phenomena, which arise because
of the anisotropic shape of the constituent rods. Theoreti-
cally, the behavior of a suspension of hard rods during
shear flow can be described by the equation that governs
the time development of their probability distribution
function, as derived by Hess1 and by Doi and Edwards.2
In the absence of a flow, the Doi-Edwards-Hess (DEH)
theory reduces to the Onsager description of equilibrium
nematic liquid crystals and can be used to describe the
isotropic-nematic (I-N) phase transition of a hard rod
suspension.3 The rheological properties are predicted to
be highly nonlinear functions of the Péclet number (Pe),
which is the ratio of shear rate γ̆ over rotational diffusion
constant Dr. This is not surprising as the Pe number can
be much larger than unity when the rodlike molecules
have large aspect ratios.

The nonlinear response of the rheological properties
indicates that the shear flow distorts the equilibrium
distributionofmacromoleculesor rods.Thespatiotemporal
microstructural changes during flow are even more
complex. At low shear rates, the DEH theory predicts that
the pseudo vector describing the average alignment of
the rods, i.e., the “director”, undergoes a continuous
“tumbling” motion in the plane defined by the velocity
and the velocity gradient vectors. At high shear rates the
director is predicted to align with the flow.4,5 At inter-
mediate shear rates, it is possible to obtain multiple

solutions to the Doi-Edwards-Hess equation, which are
dependent on the initial orientation of the director.6,7 For
one stable solution called “wagging” the nematic director
oscillates between two angles in the plane defined by the
flow and the gradient of the flow. Other solutions such as
kayaking and log-rolling are also possible, in which the
director oscillates out of the flow-gradient plane at these
intermediate shear rates.8

Experiments on polymeric liquid crystals have con-
firmed several predictions of the Doi-Edwards equation.
Using a combination of rheological and rheo-optical
measurements, it was shown that nematic solutions of
poly(benzyl-glutamate) (PBG) tumble at low shear rate
and become flow aligning at high shear rates.9 The
existence of a wagging regime and a potential coexistence
of wagging and log-rolling regimes at intermediate flow
rates have also been revealed in experiments.8,10 However,
there remain significant difficulties when comparing
experiments on polymeric liquid crystals (PLC) to theo-
retical predictions. One problem is that different levels of
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the microstructure may lead to different contributions to
the stress tensor.11 In addition to the molecular contribu-
tion to the stress tensor, textural aspects contribute. The
latter include Frank elasticity contributions due to the
presence of spatial distortions of nematic director and
viscous interactions between “domains”. In addition, there
is an indirect effect to the stress tensor as the defects
disturb the orientation distribution function. These tex-
tural contributions to the total stress dominate the
behavior at high concentrations and low shear rates,12

making it difficult to accurately extract information about
the concentration dependence of different flow transitions.
The textural portion of the stress typically displays scaling
of the transient rheological response with strain rather
than with Pe number.13 The strain scaling is a typical
feature of materials where the time response is determined
by an inherent length scale which in the case of PLCs is
set by the size of the large non-Brownian nematic
domains.14

The DEH theory describes the flow behavior of a
homogeneous ensemble of rods but does not consider any
polydomain effects. Therefore, an ideal system for testing
DEH theory should have small textural contributions. In
this paper, we use rodlike fd virus suspensions to access
the concentration dependence of the transition of tumbling
to wagging and wagging to flow aligning. We show that
the contribution of textural stress is very low, although
the spatial distribution of directors still has to be accounted
for. The main motive for using fd virus is the thorough
understanding of its equilibrium behavior, which has been
quantitatively described using the Onsager theory ex-
tended to take into account the semiflexible nature of fd
as well as its surface charge.15 Moreover, fd has already
successfully been used for (micro)rheology experiments
in the isotropic phase.16,17 The aim of the present paper
is to make a comparison between the dynamic flow
behavior of fd suspensions and the available microscopic
theoretical predictions of the DEH theory for a homoge-
neous system of colloidal rods under shear.

The paper is organized as follows. In section II, we
discuss the equation of motion of the orientational
distribution function and the numerical method we use
to solve it. The experimental details about sample
preparation and measurements are given in section III.
The results are discussed in five parts: the stationary
viscosity of fd suspensions, the concentration and shear
rate dependence of the oscillatory response to a flow
reversal, the relaxation after cessation of flow at high
concentration, and in situ microscopy under shear. In
section IV, the textural contribution to the stress tensor
is investigated in more detail. Finally, we present a

nonequilibrium phase diagram of shear and concentration
dependence of different flow transitions.

II. Theory
The distribution of an ensemble of rods can be described

by the probability density function P(û1,.., ûN, r1,.., rn) of
the positions {rbi} and orientations {ûi} of the rods. Ignoring
any spatial correlations, i.e., restricting to a monodomain,
we have P(û1,.., ûN, r1,.., rn) ) FjP(û1,.., ûN), where Fj ) N/V
is the particle density. Therefore, the orientational prob-
ability density function, or orientational distribution
function (ODF), fully characterizes the system. The time
evolution of the ODF for a suspension of rods during flow
is obtained by solving the equation of motion for the ODF,
given by the N-particle Smoluchowski equation

where R(...) ) û × ∇û(...) is the rotation operator with
respect to the orientation û of a rod. Dr is the rotational
diffusion of a rod at infinite dilution. Furthermore, D is
the thickness of the rods and L is their length. Γ ) γ̆ Γ̂ is
the velocity-gradient tensor with γ̆ the shear rate. Here
we choose

which corresponds to a flow v in the x-direction and its
gradient ∇v in the y direction.

The concentration where the isotropic phase becomes
unstable in the absence of shear flow can be calculated by
solving the Smoluchowski equation at zero shear rate.
This equation agrees with Onsagers approach to the I-N
transition. Often the Maier-Saupe potential is used instead
of the exact potential, which in fact corresponds to the
first term of the Ginzburg-Landau expansion of the outer
product in the exact potential given between the brackets
in eq 1.18 Under flow conditions, a rich dynamics phase
behavior is found as a function of shear rate and rod
concentration. Marrucci and Maffettone were the first to
solve the equation of motion of the ODF numerically,
restricting themselves to two dimensions in order to reduce
the computational effort.4 They found that the director
undergoes a tumbling motion with respect to the flow
direction, resulting in a negative normal stress N1. Larson
expanded the ODF in three dimensions using spherical
harmonics and truncated the expansion after checking
for convergence.5 This treatment predicts a transition from
tumbling to “wagging” and finally to flow aligning state
with increasing shear rates. A closure relation is frequently
used for the interaction term on the right side of eq 1. This
can greatly bias the results, see e.g., Feng et al.19 The
location of the flow transitions in the flow-concentration
diagram is very sensitive to the choice of the closure, and
no satisfactory closure has been found up till now.

In this paper, we use a finite element method to
numerically solve the equation of motion for the ODF,
thus avoiding the use of any specific closure relation. As
a typical diffusion-convection equation, eq 1 describes
the diffusive-convective transport dynamics of an ori-

(11) Larson, R. G. On the relative magnitudes of viscous, elastic and
texture stresses in liquid crystalline PBG solutions. Rheol. Acta 1996,
35 (2), 150-159.

(12) Walker, L. M.; Mortier, M.; Moldenaers, P. Concentration effects
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liquid crystalline polymers. J. Rheol. 1991, 35 (4), 539-563.

(15) Purdy, K. R. Dogic, Z.; Fraden, S.; Rühm, A.; Lurio, L.; Mochrie,
S. G. J. Measuring the nematic order of suspensions of colloidal fd virus
by X-ray diffraction and optical birefringence. Phys. Rev. E. 2003, 67,
031708.

(16) Graf, C. Kramer, H.; Deggelmann, M.; Hagenbüchle, M.; Johner,
Ch.; Martin, Ch.; Weber, R. Rheological properties of suspensions of
interacting rodlike fd-virus particles. J. Chem. Phys. 1993, 98 (6), 4921-
4928.

(17) Schmidt, F. G.; Hinner, B.; Sackmann, E.; Tang, J. X. Viscoelastic
properties of semiflexible filamentous bacteriophage fd. Phys. Rev. E
2000, 62 (4), 5509-5517.

(18) Dhont, J. K. G.; Briels, W. J. Viscoelasticity of suspensions of
long, rigid rods. Colloid Surf. A 2003, 213 (2-3), 131-156.

(19) Feng, J.; Chaubal, C. V.; Leal, L. G. Closure approximations for
the doi theory: Which to use in simulating complex flows of liquid-
crystalline polymers? J. Rheol. 1998, 42 (5), 1095-1119.

∂P(û, t)
∂t

) DrR‚{RP(û, t) + DL2FjP(û, t)R̂ Idû′P

(û′, t)|û′ × û|} - R̂·P(û, t)û × (Γ‚û) (1)

Γ̂ ) (0 1 0
0 0 0
0 0 0 ) (2)
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entation of a homogeneous ensemble of thin rigid rods. A
surface of a sphere is constructed on which a tip of the rod
moves with respect to its center of mass. The equation for
the probability of finding the tip of a rod in an area is
determined by the transport fluxes on its boundaries due
to (1) the Brownian diffusion (the first term in the brace
brackets of eq 1), (2) the convection induced by the
interparticle forces (the second term in the brace brackets
of eq 1), and (3) the convection due to the imposed shear
flow (the third term of eq 1).

To solve eq 1 numerically, a discretization scheme is
used, and meshes on the surface of a unit sphere are
constructed. For those operators inside the brace brackets
which represent the transport fluxes, we apply the central
differences approximations. However, the rotation opera-
tor outside of the brace brackets needs to be discretized
using the concept of transport fluxes through the bound-
aries of the mesh. In other words, the integral form of the
eq 1 is invoked and applied to each of the mesh elements.
To do this the identity, (û × ∇û)‚F ) ∇û‚(F × û) is used
in order to transform the angular transport flux of a rod
to the translational transport flux of one tip of that rod.
It differs from the conventional method of discretizing a
differential equation where the operators are written
explicitly into the sum of the first- and second-order
derivatives, and then the latter are approximated by
selected difference schemes. The advantage of the current
method is that, since neighboring meshes share bound-
aries, the fluxes leaving one mesh are always absorbed by
the surrounding meshes and vice versa. Therefore, there
is no loss and generation in the total amount of the ODFs
as the computation proceeds (see Figure 1). In practice,
a 40 × 80 mesh was used on the surface of a unit sphere
with 40 equispaced grids in the polar angle and 80
equispaced grids in the azimuthal angle in a spherical
coordinates. The right-hand side of eq 1 is discritized on
the meshes according to the flux-conservative method
mentioned above. A fourth order Adams' predictor-
corrector method20 was invoked to follow the time evolution
of the ODF. More details will be published in a forthcoming
paper.

The time-dependent ODF is now used to calculate the
time-dependence of three parameters characterizing the
flow behavior of a nematic phase: (1) θ describing the
angle between the nematic director and flow direction, (2)
the scalar magnitude of the director defined by the order

parameter P2, and (3) the total stress of an ensemble of
flowing rods. The angle and magnitude of the order
parameter are obtained from the order parameter tensor

The largest eigenvalue of the order parameter tensor λ,
characterizes the degree of alignment of rods with respect
to the director given by the corresponding eigenvector n̂.
The largest eigenvalue of S is 1/3 in the isotropic phase
and 1 for a perfectly aligned nematic phase. Scalar order
parameter P2 is defined as P2 ) (3λ - 1)/2.

The stress σ12 is obtained from the deviatoric part of the
stress tensor derived by Dhont and Briels18

where

and

Here, φ ) π/4 D2LFj is the volume fraction of rods, and Pe
) γ̆/Dr the rotational Péclet number which is defined as
the shear rate scaled with the rotational diffusion of a rod
at infinite dilution. The first term between the brackets,
S - 1/3Î, stems from the Brownian contribution to the
stress. The second term stems from the direct interaction
between rods and describes the elastic contribution to the
total stress. The proportionality constant φ L/D is the
dimensionless rod concentration and is also called the
nematic strength. The terms proportional to ∼Per stem
from the flow of the suspension and described the viscous
contribution to the total stress. This term disappears
instantaneously when the shear is switched off.

In Figure 2, we plot the evolution of the three parameters
(angle θ, order parameter P2, and stress σ12) as a function
of strain for different shear rates at a dimensionless rod
concentration of φ L/D ) 4.5. For this calculation, we used
an initial rod orientation in the flow-gradient plane. The
flow behavior between Péclet numbers of 4.5 and 5.0
exhibits a sharp transition from tumbling behavior, where
the director continuously rotates, to wagging behavior
where the director hops back and forth between two well
defined angles. At higher shear rates, the director is found
to be flow aligning. The order parameter at low shear
rates remains unchanged, but is significantly reduced at
the point of the tumbling to wagging flow transition.

III. Materials and Methods
The viscosity and stress response were measured using an

ARES strain controlled rheometer (TA instruments, Delaware).
A double wall Couette geometry was used because of the fairly
low viscosity of the samples. Polarized light microscopy images
of fd under shear flow were taken using a Linkam CSS450 plate-
plate shear cell.

The physical characteristics of the bacteriophage fd are its
length L ) 880 nm, diameter D ) 6.6 nm, persistence length of
2200 nm, and a charge per unit length of around 10 e-/nm at pH
8.2.21 When in solution, fd exhibits isotropic, cholesteric, and

(20) Korn, G. A.; Korn, T. M. Mathematical Handbook for Scientists
and Engineers; Mc-Graw and Hill: New York, 1968.

(21) Fraden, S. Observation, Prediction, and Simulation of Phase
Transitions in Complex Fluids, volume 460 of NATO-ASI - Series C;
Baus, M.; Rull, L. F.; Ryckaert, J. P., Eds.; Kluwer Academic Publish-
ers: Dordrecht, The Netherlands, 1995; pp 113-164.

Figure 1. Flux conservation method used in discritizing eq 1.
The rod indicates the orientation of the director with respect
to the shear flow. The probability of finding a tip of one rod in
the shaded area of the unit sphere is determined by the flux
of the probabilities through the boundary of that area.

S ) Idû ûûP(û, t) (3)

ΣD ) η0γ̆ +

3FjkBT{S - 1
3
Î + L

D
φΣI

D + 1
6

Per[S(4): Ê - 1
3
ÎS: Ê]} (4)

ΣI
D ) 8

3π
IdûIdû′ûû × û × û′

|û × û′|û‚û′P(û, t)P(û′, t) (5)

S(4) ) Idû ûûûûP(û, t) (6)
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smectic phases with increasing concentration.22,23 fd forms a
cholesteric phase while the DEH theory is valid for nematic
structures. In practice, nematic and cholesteric phase are locally
almost identical and the free energy difference between these
phases is very small.24 In this paper, we do not distinguish
between these two phases. The fd virus was prepared according
to standard biological protocols using XL1-Blue strain of E. coli
as the host bacteria.25 The standard yields are approximately 50
mg of fd per liter of infected bacteria, and virus is typically grown
in 6 L batches. The virus is purified by repetitive centrifugation
(108 000 g for 5 h) and re-dispersed in a 20 mM Tris-HCl buffer
at pH 8.2.

A. fd as a Model Hard Rod System. The Onsager theory for
hard rod dispersions predicts a first order phase transition
between a disordered, isotropic phase and an orientationally
ordered, nematic phase. Due to hard core athermal interactions
considered in the Onsager model, the phase diagram is tem-
perature independent and the rod concentration is the only
parameter that determines the location of the I-N phase
transition. The two points spanning the region of isotropic-
nematic coexistence are called the binodal points. The spinodal
point is located at a rod concentration higher than the lower

binodal point and is determined by the following condition φ L/D
) 4. fd viruses are not true hard rods, due to surface charge and
limited flexibility. As a consequence, their equilibrium phase
behavior differs from the ideal hard rod case described by Onsager
based theory, e.g., DEH. The finite flexibility of fd viruses drives
the concentration of the binodal points to a 30% higher value
when compared to equivalent but perfectly stiff hard rods. In
addition, flexibility also reduces the value of the order parameter
of the coexisting nematic phase. For fd, the order parameter of
the coexisting nematic is about 0.65, whereas Onsager theory
for hard rods in equilibrium predicts the order parameter of 0.8.15

The effect of surface charge is to increase the effective diameter
of the rod Deff and therefore the excluded volume interaction
between charged rods. As a consequence, the charge reduces the
real concentration of the phase transition.26

For the fd suspension used, the binodal point at high rod
concentration cIN occurs at 11 mg/mL. After taking the effects of
flexibility and charge into account, it was shown that the order
parameter of the nematic solution of fd is quantitatively described
by the extensions of the Onsager theory to the semiflexible case.15

Hence, even though fd is flexible and charged, it can be used to
quantitatively test predictions of the DEH theory. It is, however,
a very difficult and until now unfulfilled task to incorporate charge
and flexibility into a nonequilibrium equation of motion such as
eq 1. Therefore, in this paper, we use data from ref 15 to convert
the measured concentration of fd to the nematic order parameter
of the sample. After that, we compare experiments and theory
at the same values of the order parameter.

IV. Results
A. Stationary Viscosity. The measurements of a

stationary viscosity as a function of the shear rate for
different fd concentrations are shown in Figure 3. For the
lowest concentrations of fd, the viscosity decreases
continuously with shear rate except for a small hesitation
at a shear rate of 10 s-1. This hesitation is similar to what
is observed for solutions of PBG at low concentration in
solventm-cresol.13,27 For fd at intermediate concentrations,
shear thinning becomes less pronounced, the hesitation
shifts to higher shear rates and turns into a local
maximum. For the highest fd concentration, almost no
shear thinning is observed, only a pronounced peak in the
viscosity. This shear thickening behavior has not been
previously reported.

A hesitation in the shear rate dependence of the viscosity
was predicted theoretically by Larson.5 It was argued that
the transition from the tumbling regime to the wagging
regime implies a broadening of the ODF which leads to
higher dissipative stresses. The broadening of the ODF

(22) Dogic, Z.; Fraden, S. Smectic phase in a colloidal suspension of
semiflexible virus particles. Phys. Rev. Lett. 1997, 78, 2417.

(23) Dogic, Z.; Fraden, S. Development of model colloidal liquid
crystalsandthekineticsof the isotropic-smectic transition.Philos.Trans.
R. Soc. London A 2001, 359, 997.

(24) Dogic, Z.; Fraden, S. Cholesteric phase in virus suspensions.
Langmuir 2000, 16, 7820-7824.

(25) Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning:
A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press:
Plainview, NY, 1989; Chapter 4.

(26) Tang, J.; Fraden, S. Isotropic-cholesteric phase transition in
colloidal dispersions of filamentous bacteriophage fd. Liq. Cryst. 1995,
19 (4), 459-467.

(27) Kiss, G.; Porter, R. S. Rheolog of concentrated solutions of poly-
(γ-benzyl-glutamate). J. Polym. Sci. 1978, 65, 193-211.

Figure 2. Three plots showing the behavior of the angle of the
nematic director θ (a), the magnitude of the nematic order
parameter(b), and the average stress (c) as a function of strain
after a start up of the flow. The dimensionless rod concentration
is φ L/D ) 4.5. Data are obtained by numerically solving eq 1
using the finite element method. The rods are initially placed
in the flow-gradient plane. For the stress calculation only the
elastic contribution (eq 4) was considered.

Figure 3. Stationary viscosity as a function of shear rate for
four different concentration of fd virus at 11.5, 13, 16, and 25
mg/mL.
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is illustrated in Figure 2b. As can be seen in Figure 2c,
it is not straightforward that ODF broadening really has
an effect on the stress. We calculated the time-dependent
viscosity by numerically solving the equation of motion of
the ODF for 20 different initial orientations of the director.
From the time-dependent ODFs, we calculated the
viscosity using either only the elastic term or both elastic
and viscous terms. The viscosity is averaged over all 20
traces and a tumbling period after the transient start up
flows have died out. The results are scaled to the
experiment using a typical concentration of 16 mg/mL for
Fj in eq 4 and the value of Dinf

0 ) 20 s-1, taken for the
rotational diffusion at infinite dilution.15,28 In Figure 4
the stationary viscosity decreases continuously with
increasing shear rate and only shows a hesitation when
the viscous contribution to the stress is not included. The
shear rate where this hesitation occurs corresponds with
the shear rate where the system nematic ordering is
significantly reduced and the transition from tumbling to
wagging takes place, as can be concluded from Figure 2.
Comparing the model predictions to the experiments, it
should be noted that the experimentally observed features
are much more pronounced. Moreover, there is no real
reason to leave out the viscous contribution although it
does obscure the behavior we see in the experiment. Still,
the maximum in the viscosity is interpreted as a signature
of the transition from tumbling to a wagging state.

There are three observations to keep in mind when
considering fd in the nematic phase under shear flow,
which all point to very low stresses in such systems when
compared to polymeric liquid crystals. First, the viscosity
of fd in the nematic phase is two to 3 orders of magnitude
lower than the viscosity of typical polymeric liquid crystals
such as poly(benzyl glutamate) (PBG),29 although the dif-
ference in solvent viscosity is only 1 order of magnitude.
Second, the range over which the viscosity of fd suspension
varies is more limited with changing shear rate and rod
concentration: the viscosity lies between 70 times the sol-

vent viscosity for low shear rate and low rod concentration
and 20 times the solvent viscosity for high shear rate and
rod concentration. Moreover, the viscosity as calculated
from the equation of motion of the ODF is of the same
order as the measured viscosity. Third, polymer nematics
exhibit negative first normal stress differences for certain
shear rates as was first observed for PBG solution.26 This
is a direct consequence of the tumbling of the nematic
director. Attempts have been made to measure the first
normal stress difference for nematic fd solutions but due
to very low force the signals were too small to be measured.

B. Flow Reversal Experiments. In flow reversal
experiments, the sample is first sheared at a constant
shear rate in one direction until the steady state condition
is reached. Subsequently, the direction of flow is suddenly
reversed while keeping the magnitude of shear rate
constant. Such experiments have been very useful in
characterizing and understanding the dynamics of sheared
liquid crystalline polymers.13 In the present work, flow
reversal experiments were performed covering a wide
range of shear rates and fd concentrations. Typical flow
reversal experiments are depicted in Figure 5 for a fd
concentration of 11.5 mg/mL which corresponds to c/cIN )
1.05. At the lowest shear rates, a damped oscillatory
response is obtained which decays within few oscillations
(Figure 5a). Increasing the shear rate results in a more
pronounced oscillatory response, which damps out rela-
tively slowly. The oscillatory response in Figure 5b is most
pronounced at a shear rate of 12 s-1. At even higher shear
rates, the damping again increases (Figure 5c). To
quantitatively characterize the response of a nematic to
a flow reversal, the data is fitted to a damped sinusoidal
superimposed onto a asymptotically decaying function of
the following form:

(28) Kramer, H. Deggelmann, M.; Graf, C.; Hagenbtichle, M.; Johner,
C.; Weber, R. Electric birefringence measurements in aqueous fd virus
solutions. Macromolecules 1992, 25, 4325-4328.

(29) Vermant, J.; Moldenaers, P.; Picken, S. J.; Mewis. J. A
comparison between texture and rheological behaviour of lyotropic liquid
crystalline polymers during flow. J. Non-Newtonian Fluid Mech. 1994,
53, 1-23.

Figure 4. Theoretical time averaged viscosity at a dimension-
less concentration of L/D φ ) 4.5 with (0) and without (9) the
viscous contribution of the rods, as calculated by solving the
equation of motion of the ODF for 20 independent initial
orientations of the director. The lines indicate the transition
from tumbling to wagging, and from wagging to flow aligning
as found from Figure 2. The results are scaled to the experiment
using a typical concentration of 16 mg/mL for Fj in eq 4 and Dinf

0

) 20 s-1 for the rotational diffusion at infinite dilution.15,28

Figure 5. Viscosity of the nematic fd solution in a response
to a flow reversals. The sample is sheared at shear rate +γ̆
until the viscosity is equilibrated; at time t ) 0 the shear rate
is changed to -γ̆. The concentration of fd is kept constant at
11.5 mg/mL. The data can be nicely fitted to eq 7. The fits are
not shown for clarity.

η(t) ) ηstat{1 + Ae-γ̆t/τd sin(2πγ̆t - æ
P )}(1 - bgγ̆t) (7)
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This is an empirical choice, but each variable in the fit
contains important information about the behavior of rods
in shear flow. Figure 6 shows the behavior of fit parameters
as a function of the shear rate at few selected concentra-
tions of fd virus. In this figure, we indicate with vertical
dashed lines the shear rates at which the steady state
viscosity exhibits a local maximum for four different
concentrations. Interestingly, these are exactly the same
shear rates at which the damping constant τd as well as
the tumbling period P show a sharp increase. The asymp-
totic constant b, on the contrary, shows a decrease. These
features disappear for the highest fd concentration. Pre-
sumably the three regions showing different flow reversal
behavior correspond to tumbling, wagging and flow align-
ing regime. This will be discussed in more detail in section
V.B. In the next section. we first discuss the concentration
and shear rate dependence of the tumbling period in the
regime where rods exhibit tumbling flow behavior.

C. Tumbling Period as a Function of Shear Rate
and Rod Concentration. DEH theory predicts that as
the De (or Pe) number is increased, that the “molecular”
period of oscillation decreases with increasing shear rate
in the tumbling regime.5 This feature was never fully
explored, since in most polymeric liquid crystals it was
found that the tumbling period was strain scaling,
implying that the response overlaps when the period is
scaled with the applied shear rate and the stress is
normalized by its steady state value. The strain scaling
arises as a consequence of the presence of a large, non-
Brownian, length scale in the sample that determines the
time response, even at relatively high De (or Pe) numbers.
This most probably is the domain size characterizing the
nematic texture. The log-log plot of the tumbling period
(T ) P/γ̆) as a function of the shear rate is shown in Figure

7. Here the data are only shown for a low shear rate region
which is associated with the tumbling region. Strain
scaling, if present, would give a slope of -1. However, as
can be seen in the inset of Figure 7, the reciprocal
indicating strain scaling is only approached and not
reached at the highest rod concentration studied here.

The shear rate dependence of the tumbling period is
compared to the theoretical prediction for the same rod
concentration as well as the same order parameter, see
Figure 8. The reason for using the order parameter to
assess the theoretical predictions was discussed at length
in section III.A. For purposes of comparison, the order
parameter was obtained from X-ray experiments and the
value of Dinf

0 ) 20 s-1. We emphasize that DEH theory is
microscopic and that there are no adjustable parameters
in the comparison between theory and experiments.
Clearly there is a qualitative correspondence between
theory and experiment, both showing a continuous
decrease of the period. The quantitative correspondence,
on the other hand, is limited. This is probably due to fact
that texture, although not dominating the response, is
still present. It will be shown later in section V.B that the
shear rate and rod concentration dependence of a tumbling
to wagging and wagging to flow-aligning transition agree
much better with DEH theory.

The concentration dependence of the tumbling period
is shown in Figure 9. Here, theory and experiments are
compared at a fixed shear rate at which the tumbling to
wagging flow transition occurs. The tumbling period
increases with increasing rod concentration (Figure 9a)
or, equivalently, increasing order parameter of the nematic
phase (Figure 9b). The increase of the tumbling period

Figure 6. (a) Steady-state viscosity as function of the shear
rate for fd virus at four different concentrations. All viscosity
curves exhibit shear thinning at low shear rates followed by a
local maximum in viscosity. (b-d) Behavior of the parameters
obtained from fitting the response of the shear flow reversal
experiments to eq 7. The vertical lines indicate the local
maximum in viscosity curves. The local maximum in the steady-
state viscosity curve corresponds to maximum of the tumbling
period P and damping constant τd and minimum of asymptotic
constat b in the flow reversal.

Figure 7. Dependence of the tumbling periods on the shear
rate for different concentrations of the nematic fd. The figure
shows that the tumbling period scales with a power low as a
function of the shear rate. The inset shows the power law
dependence of the tumbling period on the shear rate for different
fd concentrations.

Figure 8. Period of the oscillations (in units of strain) as a
function of the Péclet number, where the shear rate is scaled
with the rotational diffusion of fd at infinite dilution.
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with increasing order parameter was already predicted
using a linearized version of the DEH theory.30

In conclusion, the absence of strain scaling of the
tumbling period and the qualitative agreement between
theory and experiment the tumbling period indicates that
the response of the suspension of fd virus is dominated
by the molecular elasticity arising from the distortion of
the ODF of particles.

D. Relaxation at High Concentration. To measure
the relative magnitude of the elastic texture contribution
to the overall stress, relaxation experiments were per-
formed. For polymeric liquid crystals such as polyben-
zylglutamate (PBG) solutions in m-cresol, Walker et al.12

showed that there are three different regimes of relaxation
behavior, each of which is related to a distinct structural

(30) Kuzuu, N.; Doi, M. J. Phys. Soc. Jpn. 1984, 53, 1031.

Figure 9. Period of the oscillations (in units of strain) as a
function of the dimensionless concentration (a) and order
parameter (b). The shear rate was chosen at the point we identify
with the tumbling to wagging transition for experiment (9)
and exact theory (O).

Figure 10. Stress relaxation after cessation of flow for fd at
25 mg/mL (c/c* ) 2.3), varying the initial shear rate. The time
is scaled by the initial shear rate. The stress is normalized by
the stress before the cessation of flow.

Figure 11. Polarization images of the nematic fd at 14 and
25 mg/mL for a range of different steady-state shear rates. The
dashed line in the bottom right image indicates the border
between the structured and unstructured regions.
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relaxation. There is a “fast” relaxation of the nematic fluid;
a “slower” relaxation that exhibits scaling with the shear
rate before the cessation of flow, which is due to the indirect
contribution of the texture to the overall stress; and a
“long-time” relaxation due to the reorganization of the
texture on a supramolecular level which will not be
addressed here.

Stress relaxation experiments were performed in the
low shear rate “tumbling” region, at shear rates smaller
than those corresponding to the maximum in the viscosity.
The sample used had a relatively high fd concentration
of 25 mg/mL, corresponding with c/cIN ) 2.3. Some typical
responses to the cessation of flow are depicted in Figure
10.Thestress isnormalized to itsvaluebefore thecessation
of flow, and the time axis is scaled by the shear rate. The
fast component of the decay takes place at less than a
tenth of a second, which is comparable to the response of
the force re-balanced transducer and therefore not shown.
The slow component of the stress relaxation scales when
time is multiplied with the previous shear rate, but only
from the point that the stress has decayed to less than
30% of its original value, or less for higher initial shear
rates. From Figure 10, it can be concluded that the
contribution to the stress for the highest concentration
used and for low shear rates is 30%. This is the absolute
upper limit for the samples used in this paper. It should
be noted that for PBG solutions 30% it was found to be
the lower limit.12

E. In Situ Microscopy. The flow-induced changes of
the liquid crystalline texture during steady-state shear
flow were studied using a plate-plate geometry in
combination with a polarization microscope. Measure-
ments were performed for fd concentrations of 14 and 25
mg/mL. Typical images are shown in Figure 11 for different
shear rates. Interestingly the characteristic size of the
“domains” was very large. Birefringent regions of up to
half a millimeter were observed under static conditions.
When the sample is subjected to shear flow, these domains
will elongate and eventually disappear, at values of the
shear rate which correspond to the maximum in the
viscosity (see Figure 6a). An important difference between
the two concentrations is that the elongated domains
merge into bands for high rod concentration, whereas for
the low concentration the structure disappears before such
bands are formed. Interestingly, this transition to a banded
structure in the high concentration fluid takes place at a
shear rate which is higher than the shear rate where the
low concentration fluid loses its features.

V. Discussion

When comparing the flow behavior of the polymeric
nematic phase and the colloidal nematic phase of the
dispersed fd viruses, the most striking observation is the
qualitative agreement between the two systems, despite
the fact that fd is 1 order of magnitude larger. The viscosity
of the fd nematic is much smaller, and the rotational
diffusion of fd is much slower when compared to polymeric
liquid crystals. Flow reversal experiments reveal typical
transitions in the transient rheological behavior: damped
oscillations occur at low shear rates changing to undamped
oscillations at intermediate shear rate, which disappear
if the shear rate is increased even further; the time scale
of the oscillations of the stress transients is comparable.
Also other well-known phenomena like the formation of
very large bands upon cessation of flow along the vorticity
direction which have been studied in detail in polymeric
systems31 can also be observed here (data not shown).

Having established that fd virus dispersions indeed
undergo a tumbling motion under flow, the dynamic
behavior of fd suspensions can be rationalized on the basis
of the microscopic theoretical predictions for a homoge-
neous system of rods under shear. Doing so, one important
prerequisite needs to be fulfilled, namely that the domi-
nating contribution to the stress is coming from the
nematic fluid and not from the texture. It will be argued
here that this indeed is the case. Having done so, we will
be able to map out a phase diagram of the dynamic
transitions from tumbling to wagging to flow aligning.

A. Textural Evolution during Flow. The word
“texture” refers to disclination points and lines where the
director of the nematic phase changes discontinuously,
markingdomains in thesample.Whenasystemcontaining
these domains and disclinations is subjected to shear flow,
part of the dissipated energy is used to destroy these
structures. Figure 11 shows that the domains tend to
elongate and align with the flow. Disclinations can also
cause a direct contribution to the total stress resulting in
a high viscosity and a very pronounced shear thinning
behavior, typically referred to as region I.32 Experiments
on polymeric liquid crystals have revealed several features
of the flow behavior of nematic liquid crystals which are
attributed to the presence of texture in the nematic phase.
Tumbling induces distortions in the director field and the
defects arrest the tumbling, thereby inducing an elastic
stress. The length scale over which this distortion occurs,
i.e., the “domain” length scale, is an inherent non-
Brownian length scale, see ref 33. As a consequence, stress
patterns during flow reversal will display strain scaling.
Also the damping of the oscillations is explained on the
base of the presence of the polydomain structure, where,
e.g., the “friction” between the domains would lead to a
damping of the oscillations.14,34 The scaling of the stress
relaxation process after the flow is stopped with shear
rate has been explained using the same arguments. From
such an experiment, the relative contribution to the total
stress of a homogeneous nematic phase and the polydo-
main texture can be estimated since the relaxation
dynamics of the nematic phase is much faster than that
of polydomain structure.12

The micrographs in Figure 11 clearly reveal that texture
under flow exists in nematic fd dispersions. Their con-
tribution to the rheology is, however, far less prominent
when compared to polymeric liquid crystals such as PBG.
This we can infer from several observations. First, very
moderate shear thinning is observed in the low shear rate
regime for the low concentrations, which gradually
disappears with increasing concentration (Figure 6b). This
is very similar to theoretical predictions for a homogeneous
nematic phase (Figure 2b in ref 18). Also, the calculated
and measured viscosities are of the same order of
magnitude. In contrast, shear thinning can be fairly strong
in the low shear rate region (region I) where texture
dominates the response, and it will increase with increas-
ing concentration,35 although also other microstructural

(31) Vermant, J.; Moldenaers, P.; Mewis, J.; Picken, S. J. Band
formation upon cessation of flow in liquid-crystalline polymers. J. Rheol.
1994, 38 (5), 1571-1589.

(32) Walker, L. M.; Wagner, N. J. Rheology of region i flow in a
lyotropic liquid-crystal polymer: The effects of defect texture) under
shear and during relaxation. J. Rheol. 1994, 38 (5), 1524-1547.

(33) Burghardt, W. R.; Fuller, G. G. Transient shear flow of nematic
liquid crystals: Manifestations of director tumbling. J. Rheol. 1990, 34
(6), 959-992.

(34) Kawaguchi, M. N.; Denn, M. M. A mesoscopic theory of liquid
crystalline polymers. J. Rheol. 1999, 43 (1), 111-124.

(35) Marrucci, G.; Greco, F. Flow behavior of liquid crystaline
polymers. Adv. Chem. Phys. 1993, 86, 331.
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features can contribute here.36 Second, the tumbling period
is not strain scaling (Figure 7), which could be due to
either a smaller relative magnitude of the textural stress
or due to the fact that we are not in a low enough Pe
regime. Third, “strain” scaling is recovered for the slow
“textural” relaxation process after the flow has been
stopped. This experiment shows that at the highest rod
concentrations used and at low shear rates the distortional
textural contribution is about 30%. For most experiments
done, this value is probably significantly lower. So, where
texture is important, even dominating the stress response
for molecular LCPs, molecular elasticity is far more
dominating the fd virus. Though we just argued that the
texture does not dominate the shear response of the
system, this does not mean that the shear response is not
influenced by texture. For one, the oscillations we observe
are still strongly damped, and the damping only decreases
when the transition to the flow aligning state is reached
(see the behavior of τd in Figure 6). Moreover, the presence
of texture might explain the discrepancy in the behavior
of the period of the oscillations between experiment and
theory (Figure 9). Most importantly, we know from
microscopy that texture is present under shear (see Figure
11). It should be noted, however, that the size of the
polydomain structure of the fd dispersions is 1 order of
magnitude bigger as compared to PBG,29 so that the
density of disclination lines and points is about 3 orders
of magnitude lower for fd. Note that the length scale of
the texture during flow is still small compared to the
dimension of the flow cell. Since the contribution of texture
scales with the density of the disclinations,35 texture will
be far more dominating for e.g. PBG than for fd, even
when elastic constants are almost the same for the two
systems,24,37).

B. Phase Diagram of Dynamical Flow Transitions.
In this section, the experimental results are combined
and a nonequilibrium phase diagram of fd rods under
shear flow is presented. The results for the four fit
parameters plotted in Figure 6 show clear transitions at
well-defined shear rates for all fd concentrations. Although
they only give an indirect proof of the transitions, they
can be used to infer information about the flow transitions.
For all fd concentrations (except for the highest one) the
shear rate where the maximum viscosity is reached is
identical with the shear rate where the period as well as
the damping constant start to increase (indicated by the
vertical dashed lines in Figure 6). The microscopic
observations are in fairly good agreement with the
transitions inferred from the rheology. Upon approaching
the tumbling to wagging transition from tumbling to flow
aligning, the texture becomes too faint to resolve in the
microscope and texture subsequently disappears upon
reaching the FA region. For the high fd concentration,
i.e., the sample showing shear banding (Figure 11 last),
one can identify a sharp transition from a structured to
an unstructured region in the same micrograph. Since
this picture was taken in the plate-plate geometry, there
is a shear rate distribution across the image: the shear
rate is increasing going from the left side to the right. A
sharp spatial transition therefore also represents a sharp
transition at a given shear rate. Although, due to the
method of zero gap-setting, the value of the shear rate is
not exactly known ((20%), one can still identify the shear

rate where structure disappears as the shear rate where
the viscosity reaches its local maximum (the down pointing
triangles in Figure 6a). For low fd concentration of (14
mg/mL) the structure disappears around the point where
the viscosity reaches its local maximum, although the
morphological transition for the lower concentration is
less abrupt.

Figure 12 shows the behavior of flow transitions as a
function of shear rate for various fd concentrations. For
the experiment, we plotted the Péclet numbers where the
viscosity shows a local maximum and where the damping
constant reaches a maximum. The theoretical predictions
for the tumbling to wagging and wagging to flow aligning
transitions are obtained from the plots of the angle of the
nematic director θ under flow, see Figure 2. Similar to the
method used in Figure 9, the experimental concentration
is scaled to the theoretical concentration in two different
ways: effective concentration (Figure 12a) and the order
parameter P2 (Figure 12b). This figure was shown in a
preliminary paper without a detailed explanation.38 The
shear rate is rescaled to the Péclet number by using the
rotational diffusion coefficient at infinite dilution. Figure
12 allows us to draw some important conclusions. First,
it is clear that scaling the concentration with the equi-
librium order parameter gives better agreement when
compared to the scaling by the dimensionless concentra-
tion. The fact that theory and experiment agree without
using any fitting parameters (P2 was obtained in a separate
experiments15) leads to the conclusion that the DEH theory
describes the flow behavior of the fd nematics quite well,(36) Ugaz, V. M.; Cinader, D. K.; Burghardt, W. R. Origins of region

I shear thinning in model lyotropic liquid crystalline polymers.
Macromolecules 1997, 30 (5), 1527-1530.

(37) Taratuta, V. G.; Hurd, A. J.; Meyer, R. B. Light-scattering study
of a polymer nematic liquid crystal. Phys. Rev. Lett. 1985, 55 (2), 246-
249.

(38) Lettinga, M. P.; Dhont, J. K. G. Nonequilibrium phase behavior
of rodlike viruses under shear flow. J. Phys.: Condens. Matter 2004,
16, 3929.

Figure 12. Phase diagram of flow transitions for the nematic
fd phase as a function of dimensionless concentration (a) and
order parameter (b). The experimental points indicate the Péclet
numbers where the viscosity shows a local maximum (9) and
where the damping constant τd (b) reaches a maximum. The
theoretical points indicate tumbling to wagging (0) and wagging
to flow aligning (O) transitions.
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as long as the effects of flexibility and charge of the
experimental rods are included in the calculation of the
order parameter. A less convincing agreement is obtained
when comparing the experimental and theoretically
calculated periods (Figure 9). The reason for this could be
the remaining textural contribution to the overall stress
which, although small, cannot be neglected. Since we
deduce from Figure 12b, that a dimensionless concentra-
tion of φ L/D ) 4 corresponds with a fd concentration of
16 mg/mL, we used this number a posteriori to scale the
calculated molecular viscosity in Figure 4. The pure elastic
contribution shows a very nice quantitative correspon-
dence with the experimental data. Interestingly, when
the viscous term is added, the theoretical viscosity is higher
than the experimental viscosity, despite of the fact that
no hydrodynamics is incorporated.

In the previous subsection, it was argued that the
influence of textural contribution to the stress tensor of
fd are relatively small, as compared to PLCs. There are
however strong indications that the dynamic behavior is
influenced by the macroscopic bands which are formed
for the samples at the highest concentrations used (see
Figure 11 end). As can be seen in Figure 6, the typical
features for the transition to wagging disappear: there
is no increase in the damping constant, nor in the period
of the oscillations. Moreover, the theory shows only a
moderate hesitation of the stationary viscosity (which even
disappears when the viscous term is added, Figure 4),
whereas in experiments a local peak is observed which is
more pronounced with increasing concentration. The
microscopy pictures show that at high concentrations the
systems finds another way to handle the distortion of the
particle distribution at high shear rates by forming shear
bands where the overall orientational distribution is
alternating, as was already observed and partially ex-
plained for the polymeric systems.29,39,40 In the present
work, the concentration dependence of the phenomenon
at hand suggests that this merits further experimental as
well as theoretical work. In this context, one should not
forget that we compare experiments on charged and
semiflexible fd with theory for hard and stiff rods. It could
well be that these factors also play an important role. It
will be a major challenge especially to take the semiflex-
ibility into account in the equation of motion.

VI. Conclusions
Colloidal suspensions of rodlike fd viruses are an ideal

model system to study the behavior of the nematic liquid
crystalline phase under shear flow. Flow reversal experi-
ments show signatures for tumbling, wagging, and flow

aligning behavior, very similar to the behavior found in
polymeric liquid crystals. The rigid rod nature of the fd
suspension, possibly combined with a smaller relative
textural contributions to the overall stress tensor make
fd virus a suitable model system for the DEH theory.
Important in this respect is that the overall viscosity is
only one to 2 orders of magnitude higher than the solvent
viscosity. Also it is important to note that stress relaxation
experiments combined with the absence of strain scaling
in flow reversal experiments suggest that there is only a
limited contribution of textural aspects to the overall
stress, even for the highest fd concentration used in this
work. The shear thickening of the viscosity observed for
a range of fd concentrations is as yet, unexplained. The
maximum in the viscosity occurs at the critical shear rate
where the tumbling to wagging transition takes place.
Microscopic observations show that at this shear rate the
morphological features disappear, suggesting a strong
connection between the dynamic transitions and structure
formation.

The experimental results have been compared to a
microscopic theory for rod like molecules subjected to shear
flow. A nonequilibrium phase diagram is constructed,
describing the transitions from tumbling to wagging and
from wagging to flow-aligning as a function of rod
concentration and applied shear stress. When scaling the
results to the concentration where the isotropic-nematic
transition takes place, the experiment and theory show
only a qualitative agreement, possibly due to the fact that
the real rods are are both semiflexible and charged.
However, when scaling the results using the order
parameter, which is determined by the interactions
between the rods, theory and experiment show an excellent
agreement without using any fit parameters. Thus, it can
be concluded that the DEH theory accurately captures
the dynamic features of a hard rod system. fd dispersions
constitute such a hard rod system as long as flexibility
and charge are properly taken into account, which can be
simply achieved by using the order parameter to scale the
data. More theoretical work is needed, however, to explain
the clear connection between the observed band formation
at high concentrations and the dynamic transitions, and
to incorporate the effect of flexibility of the rods.
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