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Entropic forces stabilize diverse emergent
structures in colloidal membranes

Louis Kang,*a Thomas Gibaud,b Zvonimir Dogicc and T. C. Lubenskya

The depletion interaction mediated by non-adsorbing polymers promotes condensation and assembly

of repulsive colloidal particles into diverse higher-order structures and materials. One example, with

particularly rich emergent behaviors, is the formation of two-dimensional colloidal membranes from a

suspension of filamentous fd viruses, which act as rods with effective repulsive interactions, and dextran,

which acts as a condensing, depletion-inducing agent. Colloidal membranes exhibit chiral twist even

when the constituent virus mixture lacks macroscopic chirality, change from a circular shape to a

striking starfish shape upon changing the chirality of constituent rods, and partially coalesce via domain

walls through which the viruses twist by 1801. We formulate an entropically-motivated theory that can

quantitatively explain these experimental structures and measurements, both previously published and

newly performed, over a wide range of experimental conditions. Our results elucidate how entropy

alone, manifested through the viruses as Frank elastic energy and through the depletants as an effective

surface tension, drives the formation and behavior of these diverse structures. Our generalizable

principles propose the existence of analogous effects in molecular membranes and can be exploited in

the design of reconfigurable colloidal structures.

I. Introduction

Suspensions of particles with hard-core repulsive interactions
form equilibrium phases that minimize the systems’ free
energy by maximizing their entropy. Since entropy is conven-
tionally associated with disorder, it might be expected that
hard-particle fluids form structures that lack long-range order.
However, extensive experimental work and theoretical models
have repeatedly demonstrated the counterintuitive notion that
entropy alone is sufficient to stabilize ordered phases of ever-
increasing complexity. Among other examples, it has been
shown that entropy can drive formation of 3D bulk crystals in
suspensions of hard spheres,1–3 nematic and smectic liquid
crystalline phases with hard rods,4,5 and more exotic binary
crystals and diverse microphase-separated states in mixtures of
hard particles.6–8

Recent work has demonstrated that a mixture of mono-
disperse micron-long filamentous bacteriophages and non-
adsorbing polymers assemble into 2D one-rod-length-thick
colloidal monolayer membranes.9,10 Colloidal membranes

exhibit an exceedingly rich phenomenology. They support a
myriad of defects including twist domain walls and linear
arrays of pores.11 Increasing chirality induces a transition of
flat 2D membranes into 1D twisted ribbons, and mixing rods of
multiple lengths leads to formation of finite-sized colloidal
rafts that are evocative of similar structures observed in con-
ventional lipid bilayers.12,13 All of these complex mesoscopic
behaviors arise from very simple microscopic interactions
between constituent particles. Filamentous viruses interact
only through an effective hard-rod repulsion. Similarly, the
uncharged dextran molecules act as effective Asakura–Oosawa
penetrable spheres.14,15 From this perspective, the virus parti-
cles and dextran molecules comprise a gas of hard rods and
hard spheres, and the structures found in colloidal membranes
must be stabilized by entropic, hard-core interactions.16 We
formulate a theoretical model based purely on such entropic
considerations. Our model explains many known structural
features of colloidal membranes and directly relates them
to the known entropic interactions in rod/polymer mixtures.
Furthermore, it makes a number of new predictions that are
directly verified by new experimental results.

Colloidal suspensions are a quintessential model system in
soft condensed matter physics. They are not only interesting in
their own right but also provide new insights into the structure
and dynamics of diverse phases; these insights only depend
on the symmetries of the constituent particles and are thus
relevant on all lengthscales. For example, engineering colloidal
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shapes and interactions makes it possible to mimic many
processes found in atomic and molecular systems, including
liquid–gas phase separation, wetting, thermal capillary waves,
crystal nucleation, and the glass transition.3,17–21 In stark
contrast to molecular systems, the size of model colloids makes
it is possible to directly track the positions of all the constituent
particles, thus yielding important information about universal
physical processes in various condensed matter systems. Con-
ventional fluid membranes, assembled from permanently-
linked hydrophobic and hydrophilic components, are another
interesting and important soft matter system and play an
essential role in biology.22 However, due to our inability to
directly visualize real-time dynamics of lipid bilayers at the
nanometer scale, many membrane-based processes remain
poorly understood. Intriguingly, the large-scale elastic deforma-
tions of colloidal membranes are described by the same con-
tinuum theories that are used to describe conventional lipid
bilayers. Based on this observation and following the analogy
between colloids and molecular substances, we hope that
colloidal membranes will provide new understanding about
universal membrane-mediated behaviors. There have been
some recent overtures in this vein. For example, colloidal
membranes permit direct visualization and quantitative char-
acterization of liquid raft-like clusters,13 a subject that remains
controversial in conventional lipid membranes.13,23 Eventual
understanding of such complex structures requires a theoretical
model that relates mesoscopic properties of colloidal membranes
to the microscopic interactions of their constituent building
blocks.

The rest of the paper is organized as follows. In Section II we
briefly review the rich phenomenology of colloidal membranes.
In Section III, we introduce a new entropy-based theoretical
model of colloidal membranes and compare our results to
known properties of colloidal membranes, including static
edge fluctuation data (Fig. 5(b), (d), and (e)) and twist domain
wall retardance (Fig. 8).11,12 Furthermore, we also discuss new
predictions of our theoretical model, including how the structure
of the membrane’s edge depends on membrane radius (Fig. 4)
and dynamical edge fluctuation data (Fig. 5(c)). These predictions
are tested against new experimental data. Section IV explains the
model in complete detail and Section V describes experimental
methods. Finally, we summarize our findings and discuss their
wider implications in Section VI.

II. Overview of colloidal membranes

Filamentous fd viruses are monodisperse semi-rigid filaments
with 880 nm length, 7 nm diameter, and 2.8 mm persistence
length.24 When suspended in an aqueous solution at increasing
concentrations, they undergo a transition to an aligned nematic
phase characterized by long-range orientational order. This
isotropic-to-nematic phase transition is quantitatively described
by Onsager’s theory, indicating that viruses repel one another
via hard-core and electrostatic interactions.4,24,25 Filamentous
viruses are chiral and form a twisted nematic (cholesteric) phase

in which the director field rotates with a well-defined handedness.26

For wildtype fd virus, the strength of cholesteric interactions is
temperature-dependent and continuously increases with decreasing
temperature. A single amino acid substitution in the major coat
protein leads to the Y21M virus whose cholesteric phase has a
handedness opposite to that of the wildtype.24 Mixing wildtype and
Y21M viruses produces cholesteric phases with intermediate twist
pitches; at a certain ratio, the mixture exhibits no macroscopic twist.

The addition of a polymer, such as dextran, in its non-
adsorbing regime27 to a dilute isotropic fd suspension induces
virus–virus attraction via depletion.14,15 The geometry of the
constituent rods ensures that attractive interactions are strongest
for lateral associations, causing the viruses to coalesce into one-
rod-length-thick, disk-shaped mesoscopic clusters.9 They slowly
sediment to the bottom of the glass container, which is coated
with a polyacrylamide brush penetrable to dextran in order
to suppress depletion-induced virus–wall attractions.28 Over a
certain range of depletant concentrations, protrusion fluctua-
tions induce vertical repulsion between clusters, suppressing
their face-on association.10 Consequently, such clusters continue
to associate laterally, forming large equilibrium 2D colloidal
membranes that can be millimeters in diameter (Fig. 1(b)). Single
molecule tracking indicates liquid-like order within a membrane.
Twisting of constituent chiral viruses is inherently incompatible
with assembly into a layered membrane-like structure.29 Conse-
quently, twist can only penetrate into the membrane from the
edges and is expelled from the bulk. Unique properties of the
colloidal membrane allow for direct visualization of the twist
field and quantitative measurement of the twist penetration
length ltwist.

29 When the membrane radius is much bigger than
ltwist B 1 mm, the edge adopts a surface-area-minimizing
rounded shape with the constituent rods significantly tilting
into the membrane plane (Fig. 1(b)); when the membrane radius
becomes of the order of ltwist or smaller, the edge profile
becomes more square-like and rods do not significantly tilt away
from the membrane normal (Fig. 1(c)). Due to thermal excita-
tions, membrane edges undergo ripple fluctuations that can be
visualized and precisely quantified (Fig. 1(d)).

When chirality-inverted Y21M viruses are used instead of
wildtype fd, rods at the edge twist with the opposite handedness,
and when the macroscopically achiral mixture of wildtype and
Y21M viruses is used, edge-bound rods in each membrane have
equal probability of twisting with one handedness or the other.12

The achiral mixture exhibits spontaneous symmetry breaking,
which has been observed in Langmuir–Blodgett films,30,31

another class of two-dimensional structures with nanoscale
components, and which has been used in sensors of molecular
chirality.32 Increasing the rod chirality raises the free energy
of interior untwisted rods while lowering the free energy of
edge-bound twisted rods, leading to chiral control of edge line
tension.12 At sufficiently high chirality, the edge tension
approaches zero, and a flat 2D disk spontaneously transitions
into an array of 1D twisted ribbons, called a ‘‘starfish’’ (Fig. 1(e)).

The twist associated with the membranes edge also leads to
unconventional pathways of membrane coalescence.11 As two
membranes of same chirality approach each other laterally, the

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
9 

O
ct

ob
er

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
7/

5/
20

18
 7

:1
5:

40
 P

M
. 

View Article Online

http://dx.doi.org/10.1039/c5sm02038g


388 | Soft Matter, 2016, 12, 386--401 This journal is©The Royal Society of Chemistry 2016

proximal membrane edges can partially coalesce and localize
1801 of twist to a 1D structure between the membranes; con-
sequently, such structures are called p-walls (Fig. 1(f)). The rods
twist by 1801 along the axis connecting the two membranes,
from one side of the p-wall to the other. At the middle of the
p-wall, the rods point in the plane of the membranes.

III. Results
A. Circular membranes

In our model, we treat the membrane as a continuous fluid
composed of rods at constant density. Once the membrane is

stably formed, we assume it does not exchange rods with the
surrounding solution; thus, its volume is fixed. The membrane
structure is characterized by two coarse-grained degrees of free-
dom available to the rods: a twist angle y(x) about an axis in the
membrane plane and a root-mean-square amplitude b(x) of
height fluctuations perpendicular to the membrane plane.
Perpendicular fluctuations increase the effective thickness of
the membrane, and instead of using b(x) directly, we will develop
a microscopic theoretical model and present its results using the
coarse-grained membrane half-thickness h(x) = t cos y(x) + b(x),
where t is the half-length of the virus.

The model free energy is comprised of three entropic
components. The first term is the Frank free energy that

Fig. 1 Overview of colloidal membranes. (a) fd virus particles and dextran molecules act as rod-shaped colloids and spherical depletants, respectively.
(b) Depleting molecules condense a dilute isotropic virus suspension into a liquid-like colloidal monolayer of aligned rods. From left to right, differential
interference contrast (DIC) image of circular membranes of various sizes, transmission electron microscopy image showing a curved cross-section of the edge of
a large membrane, and schematic of two large circular membranes of opposite chirality. (c) From left to right, top- and side-view LC-PolScope images of a
medium-sized membrane, top- and side-view LC-PolScope images of a small membrane, and top- and side-view schematics of a small membrane. Along with (b),
these images illustrate that edges of smaller membranes are more squared. (d) DIC images of thermally-excited ripple fluctuations at four different times. (e) DIC
images of a temperature induced transition of a flat 2D colloidal membrane (left) into a structure with a starfish morphology (right). (f) DIC image (left) and schematic
(right) of a twist domain wall, or p-wall, formed from two partially-coalesced circular membranes. (b) (left), (c)–(f) Scale bars, 4 mm. (b) (middle) Scale bar, 0.2 mm.
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disfavors bend elastic distortions of rods within a membrane
while favoring local twisting of rods at their naturally-preferred
wavenumber q;33 it depends predominantly on y. All experi-
mental results are obtained using wildtype virus suspensions,
which favor left-handed twist.24 The second term is associated
with free volume accessible to the depleting polymer due to
the presence of the membrane; it depends on the thickness
profile h (see Fig. 2(a)). Aside from the constant volume of the
incompressible membrane, the excluded volume is approxi-
mately its surface area times the depletant radius; thus, this
term acts as an effective surface tension energy. Its magnitude
is proportional to the depletant concentration and to the
temperature. The third and final term accounts for the entropy
associated with rods protruding from membranes into the

surrounding volume occupied by the depleting polymer, a
phenomenon reported in ref. 10. Protrusion of each rod
increases the effective surface area of the membrane, which
decreases the volume accessible to the depletant molecules.
The preferred magnitude of rod height fluctuations b0 is
determined by a trade-off between rod entropy, which prefers
larger b, and the depletion effect, which tends to minimize b
(see Fig. 2(b)). In our system, the preferred magnitude of this
effective surface roughness is very small—b0 { t—but the
energetic cost of deviations from this value depends on the
rod angle y (see Fig. 2(c)). When y E 0, rods are packed more
closely in the plane of the membrane, assuming a constant
perpendicular distance x between rods. Thus, rod fluctuations
produce surface roughness on a smaller length scale, which
creates more effective surface area and costs more energy. In
this case, b = b0 is strongly preferred, so h E t cos y and rod
entropy can be ignored. When y B 1, rods are spaced farther
apart in the plane of the membrane, leading to fluctuation-
produced surface roughness on larger length scales. These
longer-wavelength fluctuations resist b = b0 more weakly, so h
may differ significantly from t cos y. In a similar fashion,
manipulating the surface roughness of larger colloids can tune
their depletion-induced interaction.34,35 In summary, the rod
fluctuation term couples h to t cos y with a y-dependent coupling
strength. To obtain the membrane structure, we minimize
the total free energy over y(x) and h(x). At the center of the
membrane, the membrane is fixed to be one-virus-length thick,
while there are no height constraints at the membrane edge.

In order to obtain quantitatively meaningful results, we use
parameter values that are extracted from relevant experimental
measurements when possible (Table 1). Five parameters, whose
values are neither experimentally controlled nor directly mea-
sured, are allowed to vary as fit parameters: the characteristic
depletant size a, the Frank elastic constant K in the one-
constant approximation, the amplitude and transition tempera-
ture of the temperature-dependent twist wavenumber q(T),
and the virus birefringence Dn. In our theory, we maintain
the experimentally-measured square-root behavior of q(T)
(see ESI, of ref. 12). The Frank elastic constant can be written
in dimensionless form as k(T) � K/natT, a ratio between the
influence of Frank elasticity and that of depletion. Presumably,
K depends on temperature in a complicated fashion, as measured
for a variety of lyotropic and thermotropic liquid crystals,39–42 but
we ignore this effect.

We first use our theoretical model to determine how
membrane structure depends on its radius. We use cylindrical
coordinates and assume circular symmetry (Fig. 3(a) and (b)).
For convenience, we use the reverse radial coordinate Dr, which
originates at the membrane’s edge and takes positive values
towards the center of the membrane. y is the twist angle about
the local radial axis. Fig. 3(c) plots the vertical membrane profile
for membranes with very large radii and varying Frank-to-
depletion ratios k and twist wavenumbers q. For all conditions,
h E t cos y, indicating that y is sufficiently small to suppress rod
height fluctuations. Thus, rod entropy does not contribute signifi-
cantly to the structure of the membrane’s edge. First, consider the

Fig. 2 Depletant contributions to the membrane free energy. Depleting
molecules (dextran polymers in our system) are illustrated in green, and
the volume excluded to them by the membrane is illustrated in blue. (a)
The volume that is excluded to the depleting polymer due to a smooth
membrane is comprised of the volume of the membrane itself and, to first
order, the membrane surface area times the depletant radius. h(x) is the
coarse-grained half-thickness of the membrane. (b) Rod height fluctua-
tions produce an effective surface roughness that increases the effective
surface area of the membrane and contributes extra excluded volume:
(top) an idealized configuration with no height fluctuations and (bottom)
an idealized configuration with small-wavelength height fluctuations of
amplitude b = h � t cos y that increase the excluded volume. The dotted
line represents the excluded volume of the configuration without height
fluctuations. (c) The free energy density of rod height fluctuations are
calculated in the mean-field limit by considering a single protruding rod
amid a membrane of constant local thickness: (top) rods at small tilt angle
y and (bottom) rods at large y. The magnitude of this free energy density
decreases with increasing y because tilted rods are less dense in the
membrane plane by a factor of cos y, assuming a constant perpendicular
distance x between rods. In other words, the surface roughness length-
scale in the f-direction is proportional to 1/cos y, or equivalently, the extra
effective surface area created by fluctuations is proportional to cos y.
Theoretical details are given in Section IVA.
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q = 0 profiles in Fig. 3(c) corresponding to a macroscopically
achiral rod mixture. When k is greater than a critical value kc = 1,
the untwisted configuration with y = 0 is favored. When k o kc,
depletion drives spontaneous chiral symmetry breaking into a
twisted configuration with either y 4 0 or y o 0. In the k - 0
limit where only depletion exists, the vertical edge profile is
semicircular to minimize the membrane surface area. Now,
consider the q = 2.2 mm�1 case in Fig. 3(c) corresponding to a
chiral rod mixture. Twisted configurations of one handedness
(here, y 4 0 for q 4 0) become favored at all k. In the depletion-
dominated regime k { 1, the vertical edge profile again
approaches a semicircle. In the Frank-elasticity-dominated regime

k c 1, the rod twist decays with penetration length ltwist �
ffiffiffiffiffi
kt
p

, in
analogy to the way that twist penetrates into a smectic phase.
Calculations of kc and ltwist are provided in Appendix A.

In addition to describing edges of large membranes, our
theoretical model also describes how edge profile varies with
decreasing membrane diameter. To test these predictions, we
measure the retardance of different-sized membranes using

quantitative LC-PolScope microscopy, which directly reveals the
twisting of rods away from the membrane normal. When
polarized light passes through a birefringent material, the com-
ponents corresponding to the dielectric tensor eigenvectors—the
ordinary and extraordinary waves—propagate at different speeds.
The resulting phase difference between these components multi-
plied by the wavelength of the light is the retardance D. For a
uniaxial crystal of constant thickness, retardance can be calcu-
lated as D = 2Dnh sin2y,43 where Dn is the birefringence. For
membranes of various radii, we calculate D(Dr) with the fit values
given in Table 1 and the approximation h = t cosy, since our
results in Fig. 3(c) demonstrate that rod fluctuations b are
insignificant for membrane edges. We use the same parameter
values for all membrane sizes; only the radius changes. The
radially-averaged edge retardance profiles measured for mem-
branes of various radii match well with our theoretical predictions
(Fig. 4(b)). These results demonstrate that rods are less tilted at
the edges of smaller membranes compared to those of larger
membranes insets of (Fig. 4(b)), consistent with observations that

Table 1 Membrane parameters and their values

Parameter Variable Experimental value Ref. Theoretical fit value

Virus half-length t 440 nm 24 Same
Temperature T 0–60 1C Experimental Same
Depletant concentration n 35–51 mg mL�1 Experimental Same
Depletant radius a B25 nm 36–38a 31 nm
Nearest-neighbor virus distance x 12 nm Unpublishedb Same
Frank elastic constant K 0.5 pN 26c 2.8 pN
Preferred twist wavenumber q(T) 0:5 mm�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=60 �C

p
12c

2:5 mm�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=120 �C

p
Virus birefringence Dn 0.0087 � 0.0007 29d 0.0065

a Hydrodynamic radii for dilute solutions of 500 kDa dextran, whereas our experiments are in the semidilute regime. b Unpublished data extracted
from X-ray scattering. c Measured in the bulk cholesteric phase with fd virus concentration 100 mg mL�1, which is lower than the membrane virus
concentration 230 mg mL�1 estimated from the experimentally-measured nearest-neighbor virus distance x. d Assuming that the nematic order
parameter in membrane is 1. Membrane virus concentration 230 mg mL�1 estimated from the experimentally-measured nearest-neighbor virus
distance x.

Fig. 3 Vertical edge profile of a large membrane and its dependence on Frank elasticity and chirality. (a) Perspective and (b) cross-section schematics
show parameterization of the membrane edge profile and the cylindrical coordinate system. (b) shows rods that intersect the light blue plane in (a). Dr is a
reverse radial coordinate where Dr = 0 corresponds to the membrane edge. h is the membrane half-thickness and y is the rod tilt angle. t is the half-
length of the rods. (c) Calculated edge profiles of a large membrane (radius R c t) with various Frank-to-depletion ratios k from left to right and preferred
twist wavenumbers q from top to bottom. In all cases, h (blue) is almost indistinguishable from t cos y (cos y in red). Note that for q = 0 and k o 1, y a 0,
demonstrating spontaneous symmetry breaking into a configuration with one handedness (y4 0) or the other (yo 0). For q = 0 and k Z 1, the untwisted
state with y = 0 has lowest energy. Experimental conditions listed in Table 1 are closest to k = 0.85 and q = 2.2 mm�1.
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larger membranes appear on side-view to have rounded edges
while smaller membranes have squared-off edges (Fig. 1(b) and (c)).

With detailed understanding of the membrane’s edge struc-
ture, we next study its fluctuations, which are clearly visible and
easily quantified with optical microscopy (Fig. 1(d)). In the large
membrane limit, we ignore curvature of the edge and, with
Cartesian coordinates, place the very edge at x = 0 (Fig. 5(a)). y is
now the twist angle about the x-axis. Using the previously
discussed model, we first calculate h(x) and y(x) for a flat edge.
We then introduce a small ripple at the edge with the tangent
angle a( y) that perturbs the rod configuration as in Fig. 5(a).
The unperturbed configuration along lines parallel to the y-axis
is mapped onto curves with the same tangent angle a( y), and
the rod rotation axis for y is always perpendicular to these
curves. See Section IVB for a mathematical description of this
ripple ansatz. We can write a( y) in terms of Fourier components
ap, where p is the ripple wavenumber. To lowest order in these
Fourier components, the relative free energy per unit length is

f ¼ 1

2

P
p

g½h; y� þ k½h; y�p2
� �

ap2, where the line tension g[h, y]

and the edge bending modulus k[h, y] are functionals of the
flat edge configuration. The line tension describes the energetic
cost of having an edge interface, and the edge bending mod-
ulus arises from the rod director’s bend distortion introduced
by the ripple. By equipartition and viscous hydrodynamics, we
obtain the fluctuation spectra

ap2
� �

¼ kBT

gþ kp2
;

1

op
¼ Z1D

gþ kp2
:

hap
2i is the average fluctuation amplitude of Fourier mode p

and op is the temporal autocorrelation decay constant of
Fourier mode p, as found in the temporal autocorrelation
function hap(t)ap(0)i = hap

2ie�opt. The decay of fluctuation
correlations arises from dissipative forces, the most significant

of which are membrane viscous stresses since we expect the
membrane to be much more viscous than the solvent. Z1D is the
one-dimensional (1D) viscosity of the membrane edge.

Using the fit values in Table 1 describing the membrane
edge, our theoretical model predicts values for g and k, which
determine the fluctuation spectra hap

2i and 1/op. These predic-
tions can be tested experimentally, and the value of g can be
extracted from the low-p limit of hap

2i. The experimental and
theoretical spectra match well over a variety of temperatures
(Fig. 5(b) and (c)). These calculations still assume h = t cos y,
since Fig. 3(c) demonstrates that rod fluctuations b are insig-
nificant for membrane edges. The ratio between 1/op and hap

2i
appears constant for all measured values of p—in agreement
with our theory—and gives a value for Z1D E 300 mPa s mm2.

We expect the 3D membrane viscosity Z to be strongly
inhomogeneous and anisotropic at the edge due to the large
aspect ratio of the rods. For instance, during a ripple fluctua-
tion, rods oriented more vertically may slide past each other
more easily than those tilted more horizontally. To roughly
estimate the magnitude of Z, we write Z1D �

Ð
dxdzZ � AZ,

where A B 2tltwist B 2t2 is an estimated cross-sectional area
of the membrane edge participating in these ripple fluctua-

tions. As calculated in Appendix A, ltwist �
ffiffiffi
k
p

t is the twist
penetration depth, and the parameter values provided in
Table 1 satisfy k B 1. This gives Z B 800 mPa s, much greater
than the solvent viscosity, which is Zs E 3 mPa s for 5 w%
500 kDa aqueous dextran.44

Measurements and calculations of the line tension g show
good quantitative agreement over a variety of temperatures T
and depletant concentrations n (Fig. 5(d)). For all n, g decreases
as T is reduced. If we measure g relative to its value at a
standard temperature, say T = 0 1C, the line tensions for
different n all collapse onto a single curve (Fig. 5(e)), indicating
that the relative effect of temperature change on g is indepen-
dent of the depletant concentration. In Section IVB, we see how

Fig. 4 Membrane edge retardance. (a) 2D LC-PolScope birefringence map of a large circular membrane with retardance represented as pixel brightness.
The dotted green line approximately corresponds to the range of Dr’s plotted in (b). Scale bar, 4 mm. (b) Retardance values D for circular membranes of
various sizes. The points indicate radially-averaged experimental data at temperature T = 22 1C and depletant concentration n = 45 mg mL�1. The shaded
region indicates the one-standard-deviation confidence intervals arising from separate radially-averaged measurements of the same membrane. The lines
indicate theoretical results calculated with these parameter values and those described in Table 1, giving k = 0.85 and q = 2.2 mm�1. Membrane radii range
from 5.1 mm (top left) to 0.45 mm (lower right). The insets show the calculated membrane profile h(r), plotted with an aspect ratio of 1. Tick marks signify 1 mm
increments. t cos y, not shown, is strongly coupled to h in all cases.
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these effects arise naturally in our model via a q-dependent
chiral term in the line tension. Colloidal membranes assembled
from chiral rods are inherently frustrated, because the particles
cannot simultaneously twist locally and assemble into a mono-
layer globally. Consequently, twist is expelled from the membrane
interior and localized to its edges. Note that q(T) is a mono-
tonically decreasing function of T (Table 1). Decreasing the
temperature increases q(T) and lowers the free energy of edge-
bound twisted rods, leading to chiral control of edge line tension.12

B. Starfish morphological transition and p-wall structure

We now apply our theory to explain more exotic structures
found in colloidal membranes. For example, when circular
membranes are subjected to a temperature quench, the line
tension decreases significantly and fluctuations at the edge
increase in amplitude. For sufficiently low T, the circular
membrane becomes unstable and grows arms of twisted ribbons
along its entire periphery (Fig. 1(e)). In our model, these starfish

arms arise from the aforementioned ripple fluctuations
(Fig. 6(a)). As the temperature decreases, the chiral wavenumber
q(T) increases and lowers the line tension g. For sufficiently large
q, g becomes negative and long-wavelength ripple modes along
the membrane circumference become unstable, which presum-
ably grow and twist into starfish arms. Fig. 6(b) plots the range of
unstable wavenumbers p, measured around the circumference,
as a function of chiral wavenumber q for constant k = 0.85. Above a
critical qc E 3 mm�1, low-p modes become unstable. An instability
with p E 1 mm�1 in a membrane of radius R E 5 mm corresponds
to a five-armed starfish structure as depicted in Fig. 1(e) and 6(a), so
the order of magnitude of unstable p’s calculated in Fig. 6(b) follows
expectations. Note that changing the temperature also changes k(T),
but the effect is qualitatively insignificant. The transition from a
circular membrane to a starfish structure is reversible, so reheating
to a positive g drives the edge-length-maximizing starfish structure
to decrease its edge length and become circular again.12

We also use our theoretical model to quantitatively explain
another prominent and experimentally-characterized feature of

Fig. 5 Line tension analysis of the membrane edge. The points indicate
experimental data at various temperatures T and depletant concentrations n.
The lines indicate theoretical results calculated for corresponding parameter
values and those described in Table 1. (a) Schematic of the membrane ripple
ansatz through which line tension and line bending modulus are calculated.
a( y) is the angle between the ripple tangent vector and the y-axis.
(b) Thermal fluctuation amplitudes hap

2i and (c) autocorrelation decay time-
scales 1/op of ripple fluctuations for depleting concentration n = 45 mg mL�1

and various temperatures T. The theoretical plots of 1/op use the fit value for
the 1D membrane edge viscosity Z1D = 300 mPa s mm2. (d) Line tension g and
(e) its relative temperature-dependent behavior as a function of temperature
for various n. For each n, g01C is the line tension extrapolated to T = 0 1C.

Fig. 6 Starfish instability transition for large membranes. (a) Starfish arms
grow from unstable ripple fluctuations in our theory. For large membranes,
we can take the Cartesian limit and ignore the curvature of the edge.
(b) The shaded region indicates unstable ripple wavenumbers p calculated
for preferred twist wavenumbers q and constant Frank-to-depletion ratio
k = 0.85. We take p to be continuous, corresponding to the infinite
membrane size limit; for finite-sized circular membranes, continuity
permits only certain values of p, namely multiples of the inverse radius.
The inset plots the same results on a log–log scale to demonstrate that as
q increases past a critical qc E 3 mm�1, the range of unstable p’s grows as a
power law with exponent 1/2.
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colloidal membranes: the p-wall. Observations on the assembly
pathways and structure of p-walls were described in Section II
and Fig. 1(f). Briefly, two membranes of the same handedness
can partially coalesce into a single membrane and trap a twist
domain wall, or p-wall, through which the rod director twists
by 1801. To investigate these structures theoretically, we use
Cartesian coordinates (Fig. 7(a) and (b)) and set y(x = 0) = p/2 so
the rods at the middle of the p-wall lie completely in the membrane
plane. Fig. 7(c) plots the thickness profile over a range of Frank-
to-depletion ratios k and chiral twist wavenumbers q. In all cases,
h is much greater than t cos y at the middle of the wall, since the
coupling that sets h E t cos y becomes very weak when y E p/2.
Remember, h = t cos y + b, where b is the amplitude of rod
fluctuations perpendicular to the membrane. This means these
rods undergo position fluctuations in the z-direction that are
many times larger than both their projected height t cos y and
their diameter d E 0.02t. Such a phenomenon would require
rods to pass through each other, which is theoretically allowed
because we ignore rod–rod interactions, but we wish to interpret
this result physically. h c t cos y and h c d indicate that the
membrane is thicker than multiple layers of tilted rods, so these
large fluctuations may be physically manifested as rods stacking
on top of each other. The addition of repulsive rod–rod inter-
actions may further increase the thickness of the p-wall. As for
the p-wall profile, similarly to the membrane edge, the depletion-
dominated regime k { 1 leads to a circular profile and the
Frank-elasticity-dominated regime k c 1 leads to slow rod twist
decay (Fig. 7(c)). q does not significantly affect the p-wall profile
among the parameter values explored; indeed, it appears in a
y-dependent free energy term that can almost be integrated to the
boundary, and y(x = 0) and y(x - N) are fixed (see Section IVA).
With the same parameters used to calculate the edge structure
(Table 1), the calculated optical retardance of the p-wall quantita-
tively matches the experimentally measured profile (Fig. 8).

IV. Theoretical development
A. Membrane parameterization and free energy

We treat the membrane as a continuous medium composed of
rods at constant density, and we fix the number of rods in the
membrane by fixing the membrane volume. The coarse-grained
rod twist angle y(x), rod height fluctuation amplitude b(x), and

Fig. 7 Vertical p-wall profiles and their dependence on Frank elasticity and chirality. (a) Perspective and (b) cross-section schematics showing
parameterization of p-wall profile and Cartesian coordinate system. (b) shows rods that intersect the light blue plane in (a). h is the membrane half-
thickness and y is the rod tilt angle. t is the half-length of the rods. (c) Calculated vertical p-wall profiles for various Frank-to-depletion ratios k from left to
right and preferred twist wavenumbers q from top to bottom. In all cases, h (blue) is almost indistinguishable from t cos y (cos y in red) away from x = 0.
Near x = 0, h approaches a finite mid-wall value while cos y approaches 0. Insets highlight the profile near x = 0. Experimental conditions listed in Table 1
are closest to k = 0.85 and q = 2.2 mm�1.

Fig. 8 p-wall retardance. (a) 2D LC-PolScope birefringence map of two
circular membranes joined through a p-wall with retardance represented
as pixel brightness. The dotted green line approximately corresponds to
the range of x’s plotted in (b). Scale bar, 4 mm. (b) Retardance values D. The
points indicate experimental data averaged along the p-wall at tempera-
ture T = 22 1C and depletant concentration n = 45 mg mL�1. The lines
indicate theoretical results calculated with these parameter values and
those described in Table 1.
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membrane half-thickness are related by h(x) = t cos y(x) + b(x),
where t is the half-length of the virus. We will first develop the
model assuming a circularly-symmetric membrane of radius R
and using cylindrical coordinates in which h(r), b(r), and y(r)
only depend on the radial coordinate.

We model the rods as liquid crystals whose orientations are
described by a Frank elastic free energy.33 In a circular geo-
metry, the rods point in the z-direction but can tilt with angle y
in the azimuthal direction (Fig. 3(a) and (b)). Using the one-
constant approximation, the free energy is:

FFrank ¼ K

ð
d2xh ðr 	 nÞ2 þ ðr 
 nÞ2 � 2qn 	 r 
 n

� �
(1)

FFrank ¼ 2pK
ðR
0

drh r @ryð Þ2þsin2y@ryþ
sin2 y
r
� 2qr@ry� q sin2y

	 

:

(2)

K is the 3D Frank elastic constant and q is the preferred twist
wavenumber associated with intrinsic chirality of the constitu-
ent rods. n(r) = sin y(r)f̂ + cos y(r)ẑ is the nematic director. The q
term breaks chiral symmetry, such that for q 4 0, twisted
membranes with qry 4 0 have lower energy than those with
qry o 0. When q = 0, the total free energy is invariant under the
chirality inversion y - �y.

The depletant polymers act to minimize the volume
excluded to them by the membrane. For polymers small com-
pared to the dimensions of the membrane, this excluded
volume is approximately V0 + aA, where V0 is the volume of
the membrane, A is the surface area of the membrane, and a is
the characteristic depletant radius45 (see Fig. 2(a)). V0 is con-
stant, so depletion serves as an effective surface tension.
Consequently, the free energy is given by:

Fdep ¼ 2nakBT

ð
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrhÞ2

q
þ
ð
dl h

	 

(3)

Fdep ¼ 4pnakBT
ðR
0

drr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rhð Þ2

q
þ RhðRÞ

	 

; (4)

where n is the depletant concentration, T is the temperature,
and kB is the Boltzmann constant.

Ð
dl indicates an integral over

the membrane edge boundary.
Finally, we allow rods to fluctuate perpendicularly to the

membrane plane. In general, these fluctuations have compli-
cated, non-linear effects on the free energy, but for simplicity,
we only consider fluctuations of single rods and ignore their
interactions and correlations.10 When a single rod at small tilt
angle y protrudes by a small perpendicular distance z above a
flat coarse-grained membrane surface, it introduces an addi-
tional spherical cap of volume paz2 that is excluded to the
depleting polymers (see Fig. 2(c)). Note that the protrusion also
reduces the excluded volume at the opposite surface of the
membrane, but in the mean-field limit of flat membrane
surfaces, this reduction is of order z3 or higher and can be
ignored. Meanwhile, protrusions are entropically favored by the
rods. For a distribution of vertical rod displacements p(z), the

fluctuation free energy for a single rod is a sum of depletant
and rod entropy contributions:

Fsingle ¼ pnakBT
ð
dzpðzÞz2 þ kBT

ð
dzpðzÞ log pðzÞ:

Minimizing this free energy yields p0(z) = (2pb0
2)�1/2 exp(�z2/2b0

2),
where b0 = (2pna)�1/2.

If all rods were to fluctuate with the preferred amplitude b0,
then the membrane half-thickness h and rod angle y would be
exactly related as h = t cos y + b0. However, in certain structures
such as the mid-planes of p-walls, the Frank and depletion free
energies favor profiles h(x) and y(x) that significantly deviate
from this relationship. To properly describe these structures
and account for the energetic cost of h a t cos y + b0, we
calculate the free energy of Gaussian rod fluctuations of ampli-
tude b a b0. Using the distribution p(z) = (2pb2)�1/2 exp(�z2/2b2),
the single-rod free energy becomes Fsingle = 2pnakBT(b � b0)2 to
leading order in b � b0. To coarse-grain this expression, we
multiply by the rod density and integrate over the membrane
area. For simplicity, we assume the rods are packed hexagonally
and maintain a constant perpendicular distance x between
nearest-neighbors. In the small y limit, the area occupied by

each rod is
ffiffiffi
3
p

x2
�
cos y. Our final expression for the rod fluctua-

tion free energy is

Frod ¼
8p2nakBTffiffiffi

3
p

x2

ðR
0

drr cos y h� t cos y� b0ð Þ2; (5)

where we have written b in terms of h and y. This term allows h
to deviate from t cos y + b0 with an energy penalty corresponding
to the magnitude of the deviation. Heuristically, the energy
penalty is proportional to cos y because at higher y, the rods
are spaced farther apart in the plane of the membrane, so height
fluctuations of individual rods induce less roughness at the
membrane surface (Fig. 2(c)).

We minimize the total free energy with volume-conserving
Lagrange multiplier l

F ¼ Fdep þ FFrank þ Frod þ l V0 � 4p
ðR
0

drrh

	 

(6)

over h(r) and y(r) to obtain the edge profile. The boundary
conditions are h(0) = t + b0 and y(0) = 0; h(R) and y(R) are free.

Eqn (6) simplifies for large membranes when R is much
greater than the penetration depth of edge twist ltwist; the edge
becomes essentially straight. We can then study the profile of a
twisted membrane formed from an untwisted rectangular
membrane of length Ly - N along the y-direction and length
2Lx { Ly along the x-direction. We allow the membrane profile
to vary along the x-direction and impose reflection symmetry
about the midline x = Lx where the rods are perpendicular to the
membrane (analogous to r = 0 for the original circular geometry).
We are interested in the edge profile at x = 0. In this setup, each
free energy integral becomes its Cartesian version, with FFrank

losing bend distortion terms that arise from a circular geometry.
Instead of a Lagrange multiplier term, however, volume con-
servation can be directly enforced in the following way. The
volume of the half of the untwisted membrane between x = 0 and
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x = Lx is V0 = 2(t + b0)LxLy. The change in volume brought about by

a varying h(x) is DV ¼ 2Ly

Ð Lx

0 dx hðxÞ � tþ b0ð Þ½ �. To compensate
for the lost volume, we introduce extra volume at the membrane
midline where h(x) = t + b0 by adding a width DLx of untwisted rods;
volume conservation requires DLx ¼ �DV= 2 tþ b0ð ÞLy

� �
¼Ð Lx

0
dx 1� hðxÞ= tþ b0ð Þ½ �. This extra width increases the half-

membrane’s surface area by DA = 2LyDLx and, since depletion
free energy is proportional to surface area, contributes the
additional term nakBTDA to Fdep. Ignoring a constant term
proportional to LxLy, the total free energy becomes

F

2nakBTLy
¼
ðLx

0

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @xhð Þ2

q
� h

tþ b0

� 
þ hð0Þ

þ kt

2

ðLx

0

dxh @xyð Þ2 þ 2q@xy
h i

þ 2pffiffiffi
3
p

x2

ðLx

0

dx cos y h� t cos y� b0ð Þ2;

(7)

where again, k = K/natkBT. Strictly speaking, the integrals in the
last two terms should extend from 0 to Lx + DLx, but the
contributions to the integrals from Lx to Lx + DLx are zero
because qxy = 0, y = 0, and h = t + b0 in the interior of the
membrane. Comparing eqn (6) and (7), the additional surface
area term is analogous to a Lagrange multiplier with value
nakBT/(t + b0), the effective osmotic pressure exerted by the
depletants on the membrane. Also, since this Cartesian para-
meterization implicitly inverts the membrane orientation com-
pared to the cylindrical parameterization (instead of decreasing
r, increasing x moves into the interior of membrane), the q-term
in eqn (7) has the opposite sign of the q-terms in eqn (2).

For membrane edges calculated in Fig. 3(c), h E t cos y,
which means rod height fluctuations b are strongly suppressed.
This motivates simplification of the free energy by taking the
infinite coupling limit in which Frod enforces h = t cos y + b0 and
therefore disappears from the free energy. Using values in
Table 1, we calculate b0 E 0.03t and make the further approxi-
mation that these protrusion fluctuations contribute only a
small fraction to the membrane thickness and can thus be
neglected: b0 = 0. Numerical calculations of all edge properties
fixing h = t cos y are indistinguishable from those using the full
theory. Thus, the precise form of Frod—whose derivation
required many assumptions such as y { 1, which is clearly
violated by membranes calculated in Fig. 3(c)—does not matter
for membrane edges as long as it strongly couples h to t cos y.
The strong coupling of h to t cos y permits derivation of some
analytical results, including an investigation into spontaneous
chiral symmetry breaking for q = 0, which are given in
Appendix A.

For p-walls, we use eqn (7) without the boundary depletion
term proportional to h(0) because x = 0 is the middle of the wall
and no longer an edge boundary. The rods there must lie in the
membrane plane, so we gain the extra boundary condition y(0) =
p/2. Now y is fixed at both boundaries, so if h were enforced to be
a function of y like h = t cosy, the q-term could be integrated to a
constant and the profiles would not depend on q. However, unlike

their counterparts at edges, h and y are independent near x = 0,
where calculations show that the vertical mid-wall profile satisfies
h c t cos y; thus, the membrane structures depend slightly on q
(Fig. 7(c)). This independence arises due to the angle-dependent
coupling strength of Frod, which has a factor of cosy in the
integrand (eqn (5)). Away from the middle of the wall, cosy E 1
and deviations from h = t cosy + b0 are costly for Frod. As cosy
approaches 0, these deviations cost less energy in Frod, so other
terms such as Fdep (eqn (4) without the boundary term) gain
influence on the profile configuration. The competition between
Frod, which prefers h to decrease with cosy towards the middle of
the wall, and Fdep, which prefers a constant h, sets the mid-wall
thickness. Since Frod was derived in the small-angle limit, it is not
strictly valid at the middle of the p-wall when y E 1 and h is
decoupled from t cosy, so even though our model quantitatively
predicts the experimental retardance profile in Fig. 8(b), the
results in Fig. 7(c) may not be quantitatively accurate for all
parameters k and q.

It is worthwhile at this point to compare our theory with an
alternative one, which we will refer to as the KM theory after its
developers Kaplan and Meyer,11,46 that also produces results in
very good agreement with experimental observations. First, it
should be emphasized that the philosophical approaches of the
two theories are different. Ours can be viewed as a minimalist
theory based directly on entropic interactions induced by
dextran depletants and to a lesser extent by the viruses them-
selves. The KM theory, in the grand tradition of liquid-crystal
physics, is phenomenological at its core. It introduces an order
parameter C, inspired by that describing order in a 3D smectic,
that describes the transition from rods oriented predominantly
perpendicular to the membrane plane (‘‘smectic’’ phase with
C a 0) to rods oriented predominantly parallel to the plane of
the membrane (‘‘cholesteric’’ phase with C = 0). Though the
introduction of C provides a useful and predictive theory, it is
not clear how it could be measured. The KM theory also
introduces terms in the free energy that are not directly present
in our theory: one measuring the energy cost of surface curvature
and two providing a favored relative orientation of the surface
normal N̂ and director n at the top and bottom membrane
surfaces. However, the term proportional to �h/(t + b0) in the
eqn (7) version of our theory provides a preference of y = 0, i.e., the
director prefers to be parallel to the layer normal. More generally,
the Lagrange multiplier term in eqn (6) provides this preference.
Naturally, the KM theory has more free parameters than the five of
our theory: depletant size, Frank elastic constant, twist wavenum-
ber amplitude and transition temperature, and virus birefrin-
gence (Table 1). In spite of these differences between the two
theories, they share some common features: they both employ the
Frank free energy with a term favoring twist to describe the
energetics of director deformations, and they both introduce a
term favoring h = t cos y (when b0 can be ignored in our theory)
with a coefficient (cosy in our case and |C|2 in the KM case) that
vanishes at a p-wall when y = p/2, importantly allowing h to differ
from t cosy with no direct energy cost at that point.

KM pursues a different approach to boundary conditions
than we do. They impose the condition y(R) = p/2 at the free
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edge of a circular membrane, whereas we allow the Euler–
Lagrange equations of our theory to set the conditions on y and
h at the edge. As a result, we are able to capture the edge
profiles of small membranes whose rods are clearly not parallel
to the membrane. Presumably, KM theory is amenable to the
same approach and could thus calculate edge profiles of small
membranes. KM also view the membrane thickness at the
p-wall as a boundary condition determined by experiment,
whereas it is a prediction of our model once physical para-
meters have been set.

The KM fits to edge and p-wall retardance data reported in
ref. 11 and 46 (e.g., Fig. 6 of ref. 46) are seemingly better than
the fits in Fig. 4(b) and 8(b) from our theory. It should be noted,
however, that we use one set of parameters to fit data from all
membrane radii, whereas the KM fits only consider data from a
single radius. Our fit to individual profiles are as good as those
of the KM theory.

B. Edge ripple fluctuations

Our free energy eqn (7) can also be used to investigate edge
ripple fluctuations of large membranes. First, we minimize
the free energy over h(x) and y(x) to obtain the profile for the
unperturbed membrane edge. We then introduce a small edge
ripple u( y) with corresponding tangent angle a(y) � qyu( y). We
assume that the edge profile completely propagates into the
membrane interior, so h(x, y) = h(x � u(y)), and that the rod tilt
follows the tangent of u(y), so the nematic director changes from
n(x) = sin y(x)ŷ + cos y(x)ẑ to n(x, y) = sin a( y) sin y(x �u( y))x̂ +
cos a( y) sin y(x � u( y))ŷ + cosy(x � u( y))ẑ (for a schematic of the
ansatz, see Fig. 5(a)). We have to rederive the depletion and
Frank terms in eqn (7) to allow for gradient terms in the
y-direction (expression not shown here). We expand the ripple
tangent angle in Fourier components ap:

aðyÞ ¼
X
p

ffiffiffiffiffiffi
2

Ly

s
ap cos py: (8)

p is the ripple wavenumber.12 With the help of ap = pup, where
up’s are Fourier components for u(y), we can write the free
energy in terms of the small ap’s. The free energy relative to the
state without ripples becomes

DF
Ly
¼ 1

2

X
p

g½h; y� þ k½h; y�p2
� �

ap2 þO ap
� �4� �

; (9)

which describes a 1D interface with effective line tension g and
line bending modulus k. They are given by

g½h; y� ¼ 2nakBT

ðLx

0

dx
@xhð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @xhð Þ2
q þ hð0Þ

2
64

3
75

þ 2K

ðLx

0

dxh @xyð Þ2þq@xy
h i

;

(10)

k½h; y� ¼ 2K

ðLx

0

dx h sin 2y: (11)

At thermal equilibrium, the ripple tangent angle components
take the equipartition values

ap2
� �

¼ kBT

gþ kp2
: (12)

Note that the term proportional to the chiral twist wave-
number q in eqn (10) is negative for qxyo 0. The variation of its
magnitude with temperature [q(T) is temperature-dependent]
is the theoretical basis for the chiral control of line tension
presented in Fig. 5 and ref. 12. All the other terms are positive-
definite, so this term must be responsible for the line tension
becoming negative at low temperatures, leading to the starfish
instability. It is analogous to the chiral line tension term in the
theory of Langmuir–Blodgett films, which if sufficiently nega-
tive, can drive an instability transition from a circular film to
one with similarly extended arms.31

Next we investigate the dynamics of ripple fluctuations.
We view the membrane edge as an effective 1D viscous fluid
described by the ripple profile u(y, t), which can vary with time.
We estimate the Reynolds number of this motion to be very
small B10�6–10�4, so the ripple velocity v = qtu obeys over-
damped 1D hydrodynamics:

�Z1D@y2v ¼ fext ¼ fdrag½v� �
dHT

du
: (13)

Z1D is the 1D edge viscosity and fdrag[v] is the viscous drag force
per unit length arising from membrane edge motion relative to
the bulk solvent.47 Different models of membrane–fluid inter-
actions lead to different expressions for fdrag; we see in Appendix B
that it can be largely ignored for ripple wavenumbers probed by
our experiments. In other words, dissipation of ripple excitations
occurs mainly through the membrane rather than surrounding
solvent since the membrane has much higher viscosity. Using
HT ¼ DF=Ly �

P
p

fpup for the total Hamiltonian density, where

DF/Ly is given by eqn (9) and the fp’s are an external field formally
included to calculate the response function, we obtain:

Z1Dp2qtup = �(gp2 + kp4)up + fp.

This leads to the response function

wupup
�1ðoÞ ¼ @fpðoÞ

@upðoÞ
¼ �ioZ1Dp2 þ gp2 þ kp4:

The fluctuation–dissipation theorem gives the autocorrelation
function:

SupupðoÞ ¼
2kBT

o
Imwupup ¼

2kBT

Z1Dp2
1

o2 þ op
2
;

where

op �
gþ kp2

Z1D
(14)
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is the autocorrelation decay rate. Indeed, temporal ripple angle
autocorrelations are given by

apðtÞapð0Þ
� �

¼
ð
do
2p

eiotp2SupupðoÞ ¼ ap2
� �

e�opt; (15)

with hap
2i in eqn (12).

V. Experimental methods

As model rod-like colloids, we use two strains of the filamentous
fd bacteriophage: wildtype (wt) and the Y21M mutant.24 As
compared to fd-wt, fd-Y21M has a single point mutation in which
the 21st amino acid of the major coat protein is changed from
tyrosine (Y) to methionine (M). Both viruses have the same
contour length, 880 nm, and diameter, 6.6 nm; their persistence
lengths are 2.8 mm for fd-wt and 9.9 mm for fd-Y21M. They form
cholesteric phases with opposite handedness: fd-wt forms left-
handed cholesterics whereas fd-Y21M forms right-handed
cholesterics. Finally, the chirality of fd-wt is temperature-
sensitive whereas the chirality of fd-Y21M is temperature-
independent.12

Both viruses are synthesized using standard biological pro-
tocols.48 After synthesis, we observe a small portion of viruses
that are very long—two and three times the nominal length of
the virus. We fractionated the viruses through the isotropic-
nematic phase transition; only the isotropic fraction, enriched
in nominal-length viruses, is kept for this work.12 These mono-
disperse viruses are then dispersed with concentration cvirus =
1 mg mL�1 in 20 mM Tris buffer at pH 8.0 and 100 mM NaCl.
Dextran (500, Sigma-Aldrich) is used as a depletant agent.

Samples are prepared between glass cover slides and cover-
slips in homemade chambers. A layer of unstretched Parafilm
is used as a spacer. Slides are coated with polyacrylamide brushes
to prevent nonspecific binding of the viruses with the glass slides
and to suppress the depletion interaction between viruses and the
glass walls.28 Samples are made airtight using UV-treated glue
(Norland Optical). Microscopy observations were performed with
the inverted microscope Nikon Eclipse Ti equipped with an oil
immersion objective (1.3 NA, 100
 Plan-Fluor). Data is acquired
using a cooled CCD camera (Andor Clara) for low acquisition rates
(below 50 Hz) and Phantom v9.1 (Vision Research) for fast
acquisition rates (above 1000 Hz).

Sample temperature is tuned between 4 and 60 1C with a
homemade Peltier module equipped with a proportional-
integral-derivative temperature controller (ILX Lightwave LPT
5910). The temperature-controlling side of the Peltier device is
attached to a copper ring fitted around the microscope objec-
tive, which heats or cools the sample through the immersion
oil. A thermistor, placed in the copper ring adjacent to the
sample, enabled the proportional-integral-derivative feedback
necessary to adjust the temperature. Excess heat is removed
using a constant flow of room-temperature water. Such a device
allows us to trigger the starfish instability as shown in Fig. 1(e).

The local tilt of the rods with respect to the optical axis of the
microscope is determined using an LC-PolScope (Cambridge
Research and Instrumentation).49 LC-PolScope produces images

in which the intensity of each pixel is the local retardance D of
the membrane. Such images can be quantitatively related to the
tilting of the rods away from the membrane normal (the z-axis in
Fig. 1). Rods in the bulk of a membrane are aligned along the
z-axis, and LC-PolScope images appear black in that region. By
contrast, for sufficiently large membranes, the bright birefringent
ring along the membranes periphery indicates local rod tilting as
shown in Fig. 4(a). In Fig. 8(a), the LC-PolScope image of a p-wall
indicates that the structure contains twist.

The time-independent analysis of thermal edge ripple fluc-
tuations with DIC optical microscopy yields the line tension
and the bending rigidity of the edge.12,50 The acquisition is
performed at 1 Hz so that the edge fluctuations are decorre-
lated. Intensity profile cuts along the perpendicular to the edge
are fitted by a Gaussian and yield the conformation of the edge
with subpixel accuracy. Each conformation is described in
terms of the Fourier amplitudes ap (eqn (8)). Averaging over a
sufficient number of uncorrelated images gives a fluctuation
spectrum as shown in Fig. 5(b), where the mean-square ampli-
tude hap

2i is plotted as a function of the wavenumber p. The
dynamical analysis of thermal edge ripple fluctuations with DIC
optical microscopy yields the autocorrelation decay timescale.
The acquisition is performed at 3000 Hz. The autocorrelation
decay timescale 1/op at a given wavenumber p is obtained by
fitting the temporal autocorrelation function of the Fourier
amplitudes by a simple exponential (eqn (15)). Measurements
over a sufficiently long time give 1/op as a function of p as
shown in Fig. 5(c).

Colloidal membranes can be manipulated using optical
tweezers. The laser tweezers setup is built around an inverted
Nikon TE-2000 microscope. A 1064 nm laser beam (Compass
1064, Coherent) is projected onto the back focal plane of an
oil-immersion objective (Plan Fluor 100
, NA = 1.3) and sub-
sequently focused onto the imaging plane. Using custom Lab-
VIEW software, multiple trap locations were specified and used
to stretch and manipulate membranes. Above 2 W of laser
power, one can rip off smaller membranes from a larger
membrane to produce membranes between 0.5 to 5 mm in
diameter. This technique is used to study small membranes as
shown in Fig. 1(c).

VI. Discussion

The microscopic building components required for assembly
of colloidal membranes are monodisperse rod-like viruses,
non-adsorbing dextran polymer, and polyelectrolytes to screen
electrostatic repulsion. Despite their relative simplicity, these
building blocks can assemble into a myriad of complex struc-
tures. Our theory demonstrates how their rich properties can
emerge from hard rods and depletants through three simple
entropic considerations: depletant excluded volume, rod fluc-
tuations perpendicular to the membrane, and rod twisting as
described by the Frank free energy. For example, the curved
membrane edge with chiral rods arises from the competition
between depletion, which prefers a circular vertical edge profile,
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and Frank elasticity, which prefers an exponential edge twisting
profile (Fig. 3 and Appendix A). If depletion is strong enough
compared to the Frank contribution, achiral virus mixtures will
also form twisted membranes through spontaneous symmetry
breaking. Furthermore, our theory predicts that smaller mem-
branes, with less distance over which rods can twist, have more
squared-off edge profiles; this prediction was verified by addi-
tional experimental data (Fig. 4). Decreasing the temperature
increases the preferred twist wavenumber and consequently
decreases the energy of the membrane edge, where the twist is
greatest. Thus, ripple fluctuations, which lengthen the membrane
edge, increase in amplitude (Fig. 5). Eventually, at low enough
temperatures, edges are energetically preferred and ripples are
stabilized in a twisted starfish configuration (Fig. 6). Besides
explaining the properties of the membrane edge, our theoretical
model can also explain the structure of p-walls. Along membrane
edges, a high depletion concentration strongly suppresses rod
fluctuations perpendicular to the membrane (Fig. 3). Along the
middle of p-walls, however, large rod fluctuations, which can be
interpreted experimentally as rod stacking, decreases the deple-
tants’ excluded volume and are thus favored (Fig. 7). This stack
of rods with finite thickness physically connects the two
partially coalesced membranes and, through depletion, keeps
them together.

All variables in our theory have direct physical meaning. We
directly manipulate two of these parameters—temperature and
depletant concentration—and measure several independent
physical properties—membrane retardance (Fig. 4 and 8) and
edge fluctuation spectra (Fig. 5). Theoretical calculations of these
properties demonstrate respectable agreement with experi-
mental measurements while using physically reasonable para-
meter values (Table 1). We use values for the hard-sphere
depletant size a and fd virus birefringence Dn that are within
B25% of the reported values. We require the preferred twist
wavenumber q(T) to have its measured square-root behavior. We
can compare the single Frank elastic constant K to experimental
measurements of the twist constant K2 because membrane
director distortions are dominated by the twist mode. K and
q(T) are B5 times larger than the values measured from viruses
dispersed in a bulk cholesteric phase without any depletant.
However, they depend strongly upon the virus concentration;26

membranes condensed by depletants have a higher virus
concentration than cholesteric suspensions do and thus should
have higher K and q.

Our theory uses a number of assumptions and simplifica-
tions. We study the membrane in the continuum limit with
only two coarse-grained degrees of freedom. We ignore rod–rod
interactions other than those implicit in the phenomenological
Frank free energy, whose moduli are assumed to be temperature-
independent and equal. Rod fluctuations perpendicular to the
membrane do not directly increase the membrane’s volume in
the simple manner assumed, and while these fluctuations are
most important at large rod angles y E p/2, their energetic cost
(eqn (5)) was calculated in the small rod angle, small fluctuation
amplitude limit. In addition, the retardance formula was derived
for a material of constant thickness and optical axis, which does

not apply to our membranes. We assume a simple ripple ansatz
to calculate edge fluctuation spectra, but the actual ripples may
have a different configuration with lower energy. Yet, despite all
of these approximations, our model can match experimental
results with quantitative accuracy, indicating that it still has value
in describing and elucidating properties of colloidal membranes.

The role of depletion and other hard-core interactions in
colloidal systems has been vigorously investigated from many
perspectives. Direct excluded volume minimization was used to
study depletion-driven helix formation in elastic tubes.51 Effective
entropic potentials between two anisotropic colloidal particles
have been calculated in depth52 and have been used to explain
various self-assembly processes.35,53–55 Free-volume theory and
theories based on pair distribution functions have probed the
depletion-induced phase separation of colloidal species and have
provided relatively sophisticated expressions for effective inter-
facial tensions.56–59 However, to our knowledge, the depletion
interaction has never appeared before as an effective surface
tension of magnitude nakBT explicitly. Our system admits this
expression because there is near-complete phase separation
between the colloids and the depletants and because depletion
is strong enough to fix the membrane volume in the continuum
limit. Our nakBT surface tension can be related to scaling argu-
ments near the coexistence line in Flory–Huggins-de Gennes
theory, which proposes an interfacial tension proportional to
kBT/linter

2, where linter is the thickness of the interface between
colloid-rich and colloid-poor phases.56,60,61 Taking this thickness
approximately to be the equilibrium rod height fluctuation ampli-
tude b0 calculated in our theory, our surface tension expression
agrees with that obtained by scaling: kBT/linter

2 B kBT/b0
2 B

nakBT. Moreover, the ability of our model to quantitatively match
and predict experimental results supports the validity of our
expression, which may guide the design of other colloidal systems
whose surface tension can be easily tuned by changing depletant
concentration, depletant size, or temperature.

Appendix A: spontaneous chiral
symmetry breaking at membrane
edges

As discussed in Section IVA and demonstrated in Fig. 3(c), rod
height fluctuations are strongly suppressed in membrane edge
configurations. We can simplify the free energy (eqn (7)) by
enforcing h = t cos y + b0 and approximating b0 = 0. The free
energy can then be expressed in terms of y only. In a dimen-
sionless form with x̃� x/t, L̃x� Lx/t, q̃� qt, and F̃� F/2natkBTLy,

~F ¼
ð ~Lx

0

d~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 y @~xyð Þ2

q
� cos y

� 
þ cos yð0Þ

þ k

2

ð ~Lx

0

d~x cos y @~xyð Þ2� k~q sin yð0Þ:

(A1)

To investigate the onset of twist, we expand this free energy for
small y. To third order, the first integral of the Euler–Lagrange
equation gives
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ffiffiffi
k
p

@~xy ¼ �yþ
12� 5k

24k
y3:

This equation at x̃ = 0 can be combined with the variational
boundary condition

k@~xyð0Þ ¼ �k~q� yð0Þ þ ~qy2ð0Þ þ 3� k

3k
y3ð0Þ

to obtain y(0). We first consider q̃ = 0, so F̃ has chiral symmetry.
We find a twist solution when k o kc = 1, where

yð0Þ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
ð1� kÞ

r
(A2)

close to the critical point. When k 4 1, only the trivial y = 0
solution exists. If we allow a small nonzero q̃ to break the chiral
symmetry, a twist solution appears above kc:

yð0Þ � k~qffiffiffi
k
p
� 1

: (A3)

We can integrate the Euler–Lagrange equation to leading order
and obtain

yð~xÞ � yð0Þ expð�~x=
ffiffiffi
k
p
Þ: (A4)

ffiffiffi
k
p

t acts as a twist penetration depth ltwist in analogy to smectic
phases. Free energy calculations confirm that the twist solu-
tions are favored whenever they exist. Thus, when q = 0, the
phase transition at the kc = 1 critical point is second-order and
spontaneously breaks chiral symmetry. Above kc, there is a
critical second-order line at q = 0.

We also investigate the edge profile when k { 1. It is
more convenient to write the free energy (eqn (A1)) in terms
of h̃ � h/t = cos y:

~F ¼
ð ~Lx

0

d~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @~x

~h
� �2r

� ~h

 !
þ ~hð0Þ

þ k

2

ð ~Lx

0

d~x

~h @~x
~h

� �2
1� ~h2

� k~q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~h2ð0Þ

q
:

(A5)

We chose the sign of the square-root in the last term assuming
y 4 0, so this expression applies for q 4 0. If q o 0, then yo 0
configurations have lower energy and we should choose the
opposite sign. The first integral of the Euler–Lagrange equation
gives

0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @~x

~h
� �2r � ~h� k

2

~h @~x
~h

� �2
1� ~h2

:

This equation at x̃ = 0 can be combined the variational
boundary condition

0 ¼ @~x
~hð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @~x
~hð0Þ

� �2r � 1þ k
~hð0Þ@~x

~hð0Þ
1� ~h2ð0Þ

� k~q
~hð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~h2ð0Þ
q

to obtain a twist solution as a power series in k:

~hð0Þ �
ffiffiffiffiffiffiffiffi
27

32
k

r
� 9

8
k~q: (A6)

Solving the Euler–Lagrange equation with k = 0 yields a circular
profile

~hð~xÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~xþ

~h2ð0Þ
2

 !
� ~xþ

~h2ð0Þ
2

 !2
vuut ~x : 0� ~x� 1�

~h2ð0Þ
2

1 ~x41�
~h2ð0Þ
2

:

8>>>><
>>>>:

(A7)

However, since cos y(0) = h̃(0) { 1, the coupling in Frod may be
weak. Calculations using the full free energy should be per-
formed to check if h = t cos y is a valid assumption.

Appendix B: estimation of solvent drag
during ripple fluctuations

Here we estimate the dissipative forces exerted by the solvent
on the membrane as it undergoes ripple fluctuations. We
approximate the membrane as an infinite 2D fluid and apply
the analysis of,62 who consider the drag force exerted by a
subfluid of depth d below the fluid plane. For a velocity field
v = vx̂ with wavevector p = pŷ, the drag per unit area is gdrag =
�Zsp coth(pd)v, where Zs is the subfluid viscosity. We estimate a
solvent depth d B 0.3 mm under the membrane where the
polymer brush lies. The fluid above the membrane plane exerts
much less drag because coth pd is a monotonically decreasing
function of d, so we ignore it. Assuming that an effective width
lx B ltwist B t of the membrane edge moves during the ripple
fluctuations, the drag force per unit length is approximately
fdrag ¼

Ð
dxgdrag � gdraglx. This force modifies the fluctuation

autocorrelation decay constant (eqn (14)) to

op ¼
gþ kp2

Zslx cothðpdÞ=pþ Z1D
:

With Zs E 3 mPa s from44 and Z1D E 300 mPa s mm2 from this
work, this change would increase the calculated values of 1/op

in Fig. 4(c) at low wavenumbers p t 0.3 mm�1, but it would
not significantly modify our fit value for Z1D. For example, at
p = 0.3 mm�1, 1/op would be increased B20%. Moreover, since
the measured values of 1/op do not show any increase at small
p, this analysis may overestimate the drag force, a claim whose
verification would require a much more sophisticated theory
that better captures the ripple geometry and motion.
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