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In this paper we first develop an approximate theory for the leading order concentration dependence
of the sedimentation coefficient for rodlike colloids/polymers/macromolecules. To first order in
volume fractionw of rods, the sedimentation coefficient is written as 11aw. For large aspect ratios
L/D ~L is the rod length,D its thickness! a is found to vary like}(L/D)2/ln(L/D). This theoretical
prediction is compared to experimental results. Then, experiments onfd virus are described, both in
the isotropic and nematic phase. First-order in concentration results for this very long and thin
~semiflexible! rod are in agreement with the above-mentioned theoretical prediction. Sedimentation
profiles for the nematic phase show two sedimentation fronts. This result indicates that the nematic
phase becomes unstable with the respect to isotropic phase during sedimentation. ©2000
American Institute of Physics.@S0021-9606~00!51338-5#

I. INTRODUCTION

There is extensive literature concerned with sedimenta-
tion behavior of spherically shaped colloidal particles~for a
review see Ref. 1!. Essentially exact predictions can be made
for the sedimentation velocity of spherical colloids to first
order in concentration.2 For nonspherical colloids a similar
exact prediction is nonexistent. The only attempt to calculate
the first-order concentration dependence of the sedimentation
velocity for rodlike colloids we are aware of is due to
Peterson.3 This theory is based on approximate, orientation-
ally preaveraged hydrodynamic interactions between the col-
loidal rods and a rather crude estimate of certain multiple
integrals that represent the ensemble averaged velocity. As
yet there are no accurate expressions for hydrodynamic in-
teraction tensors for rods. In Sec. II, we calculate these in-
teraction tensors in a mean-field approximation. In Sec. III
we use this approximate expression for the hydrodynamic
interaction functions to derive an explicit expression for the
first order in concentration coefficient of the sedimentation
velocity as a function of the aspect ratio of the rods. This
expression is found to agree remarkably well with Peterson’s
result for aspect ratios less than about 30. For larger aspect
ratios our result for the first order in concentration coefficient
is much larger than Peterson’s prediction. In Sec. IV, sedi-
mentation experiments on filamentous bacteriophagefd virus
are discussed. Experiments are done at low concentration to
find the first-order concentration dependence, which is com-

pared to the above-mentioned theory. In addition, sedimen-
tation experiments at larger concentrations, including the
nematic phase, are performed.

II. HYDRODYNAMIC INTERACTION BETWEEN LONG
AND THIN RODS

In order to calculate sedimentation velocities, the con-
nection between translational and angular velocities, and hy-
drodynamic forces and torques must be found. In the present
section such a relation will be established for two rods on the
Rodne–Prager level, that is, with the neglect of reflection
contributions between the rods. Considering only two rods
limits the discussion on the sedimentation velocity to first
order in concentration. Reflection contributions to the two-
rod hydrodynamic interaction functions and multibody rod
interactions are both probably small in comparison to the
Rodne–Prager terms, due to the fact that the distance be-
tween segments of different rods is of the order of the length
of the rods, at least in the isotropic state. A Rodne–Prager
approximation could therefore work quite well for long and
thin rods, although explicit results for reflection contribu-
tions should be obtained to confirm this intuition.

For the low Reynolds numbers under consideration, the
translational velocitiesvj , j 51,2, and the angular velocities
Vj are linearly related to the hydrodynamic forcesFj

h and
torquesT j

h that the fluid exerts on the rods,
a!Electronic mail: philipse@chem.uu.nl
b!Author to whom all correspondence should be addressed.
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The superscripts ‘‘T’’ and ‘‘ R’’ refer to translation and rota-
tion, respectively, while the superscript ‘‘h’’ on the forces
and torques refer to their hydrodynamic origin. On the
Brownian time scale, the 333-dimensional mobility matri-
cesM are functions of the positions of the centers of the two
rods and their orientation.

As it will turn out, in order to find the sedimentation
velocity, we need expressions forM1 j

TT , for which approxi-
mations are obtained in Sec. II B. As a first step, the fluid
flow field generated by a translating rod must be calculated.
This is the subject of Sec. II A. Rotation of rods also plays a
role in sedimentation, but as it will turn out, to first order in
concentration and with the neglect of hydrodynamic reflec-
tion contributions, these do not contribute to the sedimenta-
tion velocity. Explicit expressions pertaining to the hydrody-
namics of rotating rods are derived in the same spirit as for
translating rods in Appendix A. Section II C contains some
concluding remarks.

For the hydrodynamic calculations the rods will be
thought of as a rigid string of spherical beads with diameter
D. The length of the rods isL, and there aren115L/D
beads per rod, withn an even integer.

A. Flow field generated by a translating rod

The flow field generated by a rod that consists ofn11
beads is given by

u~r !5 (
j 52n/2

n/2 R
]V j

dS8 T~r2r 8!"f j~r 8!, ~2!

whereT is the Oseen tensor,

T~r !5
1

8ph0r
@ Î1 r̂ r̂ #, ~3!

with h0 the shear viscosity of the solvent andr̂5r /r the unit
position vector. Furthermore,f j (r 8) is the force per unit area
that a surface element atr 8 of beadj exerts on the fluid, and
]Vj is the spherical surface of beadj. For long and thin rods,
the distancesr of interest, relative to the positions of the
beads, are those for whichr @D, with D the diameter of the
beads. Now writer 85r j1R8 with r j the position coordinate
of the j th bead, so thatR85D/2, and Taylor expand the
Oseen tensor in Eq.~2! with respect toR8. Keeping only the
first term in this Taylor expansion leads to relative errors of
the orderR8/r;D/L. Up to that order we then find,

u~r !52 (
j52n/2

n/2

T~r2r j !"Fj
h , ~4!

with

Fj
h52 R

]V j

dS8 f j~r 8!, ~5!

the total force that the fluid exerts on beadj. With the neglect
of end effects this force is equal for each bead,Fj[Fh/(n
11)5(D/L)Fh, with Fh the total force on the rod. Equation
~4! thus reduces to

u~r !52
D

L (
j52n/2

n/2

T~r2r j !"F
h. ~6!

The forceFh is calculated in terms of the translational veloc-
ity of the rod self-consistently from Eq.~6! using Faxe´n’s
theorem for translational motion for each spherical bead,
where the velocityvj of beadj is expressed in terms of the
forceFj

h on beadj and the velocityu0(r j ) at the center of the
bead that would have existed without that bead being
present,

vj52
1

3ph0D
Fj

h1u0~r j !1
1

24
D2¹ j

2u0~r j !, ~7!

where¹ j is the gradient operator with respect tor j . The first
term on the right-hand side is just Stokes friction of a single
bead in an unbounded fluid, while the second term accounts
for hydrodynamic interaction between the beads. The fluid
flow field u0 in turn is equal to

u0~r !5 (
i52n/2,iÞ j

n/2 R
]Vi

dS8 T~r2r 8!"f i* ~r 8!, ~8!

wheref i* is the force per unit area that a surface element of
beadi exerts on the fluidin the absence of bead j. For very
long rods, consisting of many beads, the difference between
f i ~the corresponding force for the intact rod! and f i* may be
neglected: there are only a few neighboring beads for which
the difference is significant, but there are many more beads
further away from beadj for which the difference is insig-
nificant. To within the same approximations involved to ar-
rive at Eq.~4!, Eq. ~8! can then be written as

u0~r j !52 (
i52n/2,iÞ j

n/2

T~r j2r i !"Fi
h . ~9!

Substitution of this expression into Faxe´n’s theorem~7!, and
using thatr j2r i5( j 2 i )Dû, with û the orientation of the
rod, leads to

vj52
1

3ph0D
Fj

h2
1

8ph0D
ûû

" (
i 52n/2,iÞ j

n/2 F 2

u i 2 j u
2

1

6u i 2 j u3G
"Fi

h2
1

8ph0D
@ Î2ûû#

" (
i 52n/2,iÞ j

n/2 F 1

u i 2 j u
1

1

12u i 2 j u3G "Fi
h , ~10!

where Eq.~3! has been used together with

¹2T~r !5
1

4ph0r 3 @ Î23r̂ r̂ #. ~11!
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For pure translational motion, the velocityvj of each bead is
equal to the velocityv of the rod, so that both sides of Eq.
~10! can be summed overj, yielding for the left-hand side
vL/D. Neglecting end effects and replacing sums by inte-
grals ~which is allowed for long and thin rods!, it is found
that

v52
ln$L/D%

4ph0L
@ Î1ûû#"Fh. ~12!

Notice that the Stokes friction contribution@the first term on
the right-hand side in Eq.~10!# is logarithmically small in
comparison to the friction contribution due to hydrodynamic
interaction between the beads. In fact, the Stokes contribu-
tion is neglected in Eq.~12!. A matrix inversion, in order to
expressFh in terms ofv, and subsequent substitution into Eq.
~6!, after rewriting the sum over beads as an integral over the
center line of the rod, yields

u~r !5
4ph0

ln$L/D%
E

2L/2

L/2

dl T~r2r p2 l û!"F Î2
1

2
ûûG "v,

~13!

with r p the position coordinate of the rod. This is the ap-
proximate expression for the fluid flow generated by a trans-
lating long and thin rod that will be used in Sec. II B
to obtain an expression for the mobility matricesM1 j

TT ,
j 51,2.

B. Calculation of M TT

In order to calculate the velocityv2 that rod 2 acquires in
the flow field ~13! generated by a translating rod 1, one
should in principle perform a reflection calculation up to
very high order: The field generated by rod 1 is scattered by
each bead of rod 2 and subsequently reflected back and forth
between the different beads within rod 2. Such a calculation
is hardly feasible analytically. Here, the field generated by
rod 1 that is incident on rod 2 is approximated by a constant
fluid flow field ū equal to the average of the incident field
over the center line of rod 2. This ‘‘hydrodynamic mean-
field approximation’’ is accurate for distances of the orderL
or larger, for which separations the incident field indeed be-
comes equal to a constant. For smaller distances between the
rods this procedure provides a semiquantitative approxima-
tion. Within this approximation, the velocity of rod 2 imme-
diately follows from Eq.~12!, with v5v22ū, Fh5F2

h , the
total force of the fluid on rod 2, andû5û2 , the orientation of
rod 2,

v25ū2
ln$L/D%

4ph0L
@ Î1û2û2#"F2

h . ~14!

The average incident flow field follows from Eqs.~13! and
~12!, with v5v1 , the velocity of rod 1 andFh5F1

h , the force
on rod 1,

ū5
4ph0L

ln$L/D%
A"F Î2

1

2
û1û1G "v1

52A"F Î2
1

2
û1û1G•@ Î1û1û1#"F1

h

52A"F1
h , ~15!

where

A5
1

L2 E
2L/2

L/2

dl1E
2L/2

L/2

dl2 T~r211 l2û22 l1û1!, ~16!

with r215r22r1 the distance between the centers of the two
rods. Notice that for distancesr21 between the centers of the
rods larger thanL, the matrixA asymptotes toT(r21). By
definition the following ‘‘mean-field’’ expressions for the
translational mobility matrices are thus obtained~after an
interchange of the indices 1 and 2!:

M11
TT5

ln$L/D%

4ph0L
@ Î1û1û1#, ~17!

M12
TT5

1

L2 E
2L/2

L/2

dl1E
2L/2

L/2

dl2 T~r121 l 1û12 l 2û2!. ~18!

One might try to device approximate expressions for the ma-
trix A. However, sedimentation velocities are obtained as
ensemble averages, also with respect to orientations, giving
rise to integrals with respect tor12 and û1,2, which can be
evaluated by numerical integration.

C. Concluding remarks

The approximations involved in the previous discussion
are justified for very long rods, sinceO(1) constants are
neglected against terms of order ln$L/D%, both by neglecting
end effects and replacing sums over beads by integrals@for
the evaluation of the sums in Faxe´n’s theorem in Eq.~10!#.
Such approximations are most important for the diagonal
mobility matrix M11

TT ~notice that factors ln$L/D% do not ap-
pear in the off-diagonal matriceM12

TT , due to the resubstitu-
tion of velocities in terms of forces!. Both end effects and the
mathematical approximations involved in the calculation of
the diagonal mobility matrixM11

TT in Eq. ~17! may be accu-
rately accounted for by the replacement

ln$L/D%→ ln$L/D%2n, ~19!

with n5n' or n5n i a constant, pertaining to translational
motion perpendicular or parallel to the rods orientation, re-
spectively. This correction is experimentally significant for
somewhat shorter rods~L/D,20, say!, but vanishes relative
to the logarithmic term for very long rods. The actual values
of n' andn i for cylindrical rods are equal to4

n'520.84, ~20!

n i50.21. ~21!

A more accurate expression forM11
TT than in Eq.~17! is
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M11
TT5

ln$L/D%

4ph0L
@ Î1û1û1#

2
1

4ph0L
@n' Î1~2n i2n'!û1û1#. ~22!

In the sequel we will use this expression for the mobility
matrix M11

TT instead of Eq.~17!. The approximations in-
volved in the off-diagonal mobility matrices in Eqs.~34! and
~38! are primarily due to the mean-field treatment of the
incident flow field. It is probably a formidable task to im-
prove on these expressions.

The use of the more accurate expression~22! for the
diagonal translational mobility matrix also circumvents the
practical problem of calculating volume fractions of colloidal
rod material from given values forL, D, and number density.
For the bead model it is not so clear how the volume of a rod
must be expressed in terms ofL andD. The volume of the
cylindrical rod is simply equal to (p/4)D2L.

III. AN EXPRESSION FOR THE SEDIMENTATION
VELOCITY OF RODS

The sedimentation of colloidal material induces, through
the presence of the walls of the container, backflow of sol-
vent. The backflow velocity is inhomogeneous, and varies on
the length scale of the container. On a local scale, however,
the backflow may be considered homogeneous, and the sedi-
mentation velocity can be calculated relative to the local
backflow velocity. Thisrelative sedimentation velocity is a
constant throughout the container~except possibly in a small
region of extentL near the walls of the container, where
gradients of the backflow velocity are large!, and depends
only on the properties of the suspension. A formal evaluation
of the sedimentation velocity directly from Eq.~1!, by en-
semble averaging, leads to spurious divergences, which are
the result of the neglect of the hydrodynamic effects of the
walls of the container which lead to solvent backflow. Batch-
elor was the first to deal with these divergences correctly,
and we will use his arguments here.2

Ensemble averaging ofv1 in Eq. ~1! gives the sedimen-
tation velocityvs , which is thus found to be equal to

vs52^M11
TT"F1

h1 r̄VM12
TT"F2

h1M11
TR"T1

h1 r̄VM12
TR"T2

h&,
~23!

where the angular bracketŝ& denote ensemble averaging
with respect to positions and orientations of the rods. The
factorsr̄V5N'N21 account for the presence ofN21 rods
which all interact with rod 1 under consideration. The diver-
gence problems mentioned previously arising in the explicit
evaluation of the ensemble averages will be dealt with later.

In order to be able to calculate these ensemble averages,
the forces and torques must be expressed in terms of the
positions and orientations of the rods. On the Brownian time
scale there is a balance between all the forces and torques on
each of the rods, that is, the total force and torque are equal
to zero. The total force in turn is equal to the sum of the
forceFj

h that the fluid exerts on the rod, the interaction force
Fj

I52¹ jF ~with F the total interaction energy of the rods!,
the Brownian forceFj

Br52kBT¹ j ln$P% ~with kB Boltz-

mann’s constant,T the temperature, andP the probability
density function for positions and orientations!, and the ex-
ternal forceFext due to the gravitational field. Hence,

Fj
h5¹ jF1kBT¹ j ln$P%2Fext. ~24!

Similarly, the total torque is the sum of the hydrodynamic
torque T j

h , the interaction torque2R̂jF, the Brownian
torque2kBTR̂j ln$P%, while the torque on each rod due to
the homogeneous external force vanishes. Hence,

T j
h5R̂jF1kBTR̂j ln$P%, ~25!

where the rotation operator is defined as

R̂j~¯ ![ûj3¹uj
~¯ !, ~26!

with ¹uj
the gradient operator with respect toûj . Substitu-

tion of Eqs.~24! and~25! into Eq.~23! for the sedimentation
velocity yields

vs52^M11
TT"@¹1F1kBT¹1 ln$P%2Fext#

3 r̄VM12
TT"@¹2F1kBT¹2 ln$P%2Fext#

1M11
TR
•@R̂1F1kBTR̂1 ln$P%#

1 r̄VM12
TR
•@R̂2F1kBTR̂2 ln$P%#. ~27!

The next step in the explicit evaluation of these en-
semble averages is to determine the stationary probability
density functionP[P(r1 ,r2 ,û1 ,û2) for the positions and
orientations of two rods. At this point it is convenient to
introduce the pair-correlation functiong, defined as

P~r1 ,r2 ,û1 ,û2![P~r1 ,û1!P~r2 ,û2!g~r12,û1 ,û2!, ~28!

where P(r j ,ûj ) is the probability density function for the
position and orientation of a single rod. For spherical par-
ticles in a homogeneous external gravitational field, the prob-
ability density function for the position coordinates is simply
the equilibrium function, without an external field, provided
that the particles are identical. The probability density func-
tion differs from the equilibrium function only in case the
relative sedimentation velocity of two spheres is different,
e.g., due to differing masses and/or sizes. For rods, things are
somewhat more complicated. Even if two rods are identical
their relative sedimentation velocity generally differs as a
result of the fact that the translational friction constant of
rods is orientation dependent@see Eq.~17!#. The probability
density function is generally dependent on the external force
due to the fact that rods with different orientations overtake
each other during sedimentation. Suppose, however, that the
sedimentation velocity is so slow, that during a relative dis-
placement of two rods in the gravitational field of the order
of the lengthL of the rods, each rod rotated many times due
to their Brownian motion. The relative sedimentation veloc-
ity of two rods then averages out to zero. For such a case, the
pair-correlation function is only weakly perturbed by the ex-
ternal field, so that we may use its equilibrium Boltzmann
form,

g~r1 ,r2 ,u1 ,u2!5exp$2bF~r1 ,r2 ,û1 ,û2!%, ~29!
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Let us derive the inequality that should be satisfied for Eq.
~29! to be valid. According to Eq.~17!, the largest relative
sedimentation velocityDvs of two rods is approximately
equal to

uDvsu'
ln$L/D%

4ph0L
uFextu. ~30!

On the other hand, the timet rot required for a rotational
revolution is equal to

t rot5
ph0L3

3kBT ln$L/D%
. ~31!

Therefore, the condition under which Eq.~29! for the pair-
correlation function is a good approximation is

L/uDvsu
t rot

'
12kBT

uFextuL
@1. ~32!

Hence, the work provided by the external force to displace a
colloidal rod over a distance equal to its length should be
much smaller than a few times the thermal energy of the
rods. Substitution of typical numbers shows that this inequal-
ity is satisfied under normal practical circumstances.5 Fur-
thermore, when alignment of the rods during sedimentation
in a homogeneous suspension is of no importance, the one-
particle probability density functions in Eq.~28! are both
constants equal to

P~r j ,ûj !5
1

4pV
. ~33!

We will restrict ourselves here to the most common situ-
ation where the inequality~32! is satisfied, and assume neg-
ligible alignment, so that the probability density function is
well approximated by Eqs.~28!, ~29!, and~33!. In that case
many of the terms in Eq.~27! for the sedimentation velocity
cancel: The interaction contributions cancel against the
Brownian terms. The sedimentation velocity reduces simply
to

vs5@^M11
TT&1 r̄V^M12

TT&#"Fext. ~34!

Since M12
TT(r12,û1 ,û2);1/r12 for large distances, its en-

semble average with respect to position coordinates diverges.
Such a spurious divergence is also found for spherical par-
ticles, and is the result of the neglect of the hydrodynamic
effect of the walls of the container. Batchelor2 showed that a
formally divergent quantity, which is unambiguously finite
valued on physical grounds, can be subtracted from the en-
semble average, rendering a perfectly well-defined sedimen-
tation velocity. This finite valued quantity is formally diver-
gent for the same reason that the ensemble average ofM12

TT is
divergent, and subtraction accounts for the local hydrody-
namic effects of the wall.6 Batchelor’s argument is as fol-
lows. First define the velocityu(r ur1 ,...,rN ,û1 ,...,ûN) as
the velocity at a pointr ~either in the fluid or inside a col-
loidal rod!, given the positionsr1 ,...,rN and orientations
û1 ,...,ûN of N rods. In the laboratory reference frame the net
flux of material through a cross-sectional area must be zero.
This means that the ensemble average ofu must be zero.
Hence,

05^u~r ur1 ,...,rN ,û1 ,...,ûN!&

5E dr1¯E drN R dû1¯ R dûN

3u~r ur1 ,...,rN ,û1 ,...,ûN!P~r1 ,..,rN ,û1 ,..,ûN!,

~35!

where P(r1 ,...,ûN) is the probability density function for
$r1 ,...,ûN%. Formally, this ensemble average diverges for
the same reason that the sedimentation velocity diverges:
The flow fieldu varies like 1/r for large distances due to its
Oseen contribution. The formally divergent expression~35!,
which must be zero for physical reasons, is subtracted from
Eq. ~34! for the sedimentation velocity to render this expres-
sion convergent. The fieldu can generally be written as the
sum of two terms: a term to which the field would be equal
in the absence of reflection contributions plus a term that
accounts for the reflection contributions. Within our ap-
proach reflection contributions are neglected so that only the
former term survives here. Hence,

u~r ur1 ,...,rN ,û1 ,...,ûN!5(
j 51

N

u~r2r j !

for r in the fluid

5vs for r in a core, ~36!

where the fieldu(r2r j ), for r in the fluid, is the sum of the
flow fields in Eq.~13! ~with v replaced byvs2us!, and Eq.
~A16! ~both considered as a function of the relative distance
to the j th rod under consideration!, that is,

u~r2r j !5uT~r2r j !1uR~r2r j !, ~37!

whereuT(r2r j ) is the fluid flow generated by a translating
rod as given in Eq.~13!,

uT~r2r j !5
1

L E
2L/2

L/2

dl j T~r2r j2 l j ûj !"F
ext, ~38!

where the inverse of Eq.~12! is used, together withFh

52Fext, anduR(r2r j ) is the field generated by a rotating
rod, which is similarly given by Eq.~A16!. Operating on
both sides of Eq.~35! with *drrdû P(r ,û), whereP(r ,û) is
the constant specified in Eq.~33!, and subtraction of the
resulting equation from Eq.~34! for the sedimentation veloc-
ity yields, for identical rods and to first order in concentra-
tion ~renamedr15r2 , r5r1 , û15û2 , andû5û1!,

vs52wvs1@^M11
TT&1 r̄V^M12

TT&#"Fext

2
r̄

~4p!2 E dr12 R dû1 R dû2@uT~r12!

1uR~r12!#x f~r1ur2 ,û2!, ~39!

wherex f is the characteristic function that restricts the inte-
grations to pointsr which are in the fluid, not inside the core
of rod 2,

x f~r ur2 ,û2!51 for r in the fluid

50 for r in the core of rod 2. ~40!

8372 J. Chem. Phys., Vol. 113, No. 18, 8 November 2000 Dogic et al.



Without interactions the angular velocity of each rod is
simply proportional to the hydrodynamic torque on the same
rod @see Eqs.~A9! and~A14!#, which hydrodynamic torques
are zero. Since the integral in the above-mentioned expres-
sion for the sedimentation velocity is multiplied by the con-
centrationr̄, it follows that the rotational fielduR does not
contribute to first order in the density. For the same reason,
in each term that is multiplied by the concentration,Fext may
be expressed with Eq.~22! in terms of the sedimentation
velocity vs

0 without interactions, at infinite dilution, as

vs
05F ln$L/D%

3ph0L
2

1

6ph0L
~n'1n i!GFext. ~41!

We thus find the following expression for the sedimentation
velocity, valid to first order in volume fraction:

vs5vs
0F12S f 11 f 2

2 ln$L/D%2~n'1n i!
1O~D/L! D L

D
w G ,

~42!

where the functionsf 1 and f 2 are equal to

f 152
1

4p3DL3 E dr12 R dû1 R dû2

3@g~r12,û1 ,û2!2x f~r1ur2 ,û2!#

3E
2L/2

L/2

dl1E
2L/2

L/2

dl2
1

ur121 l 1û12 l 2û2u
, ~43!

f 252
1

4p3DL3 E dr12 R dû1 R dû2 x f~r1ur2 ,û2!

3E
2L/2

L/2

dl1E
2L/2

L/2

dl2

3F 1

ur121 l 1û12 l 2û2u
2

1

ur122 l 2û2uG , ~44!

where expressions~18! and~38! for the mobility matrixM12
TT

and the fielduT are used, respectively. We also used that
integrals over the Oseen tensor must be proportional to the
identity tensor, so that in these integrals the Oseen tensor
may be replaced by the trace13Tr$T% of that tensor, which,
according to its defining equation~3!, is equal to

Tr$T~r !%5
1

2ph0r
. ~45!

For rods interacting only via a hard-core repulsion, it is
shown in Appendix B how to reduce the number of integra-
tions, leading to the following results:

f 15
8

p3 E
0

`

dxE
21

1

dz1E
21

1

dz1E
0

p

dC j 0
2~xz1! j 0

2~xz2!@1

2~z1z21A~12z1
2!~12z2

2!

3cos$C%!2#1/21O~D/L!

56.4̄ 1O~D/L!, ~46!

f 25
2

9

L

D
1O~D/L!. ~47!

The numerical value forf 1 has been obtained by numerical
integration and applies for hard-core interactions, whereg is
equal to 0 when two cores overlap, and equal to 1 otherwise.
The result forf 2 is independent of the kind of direct inter-
action between the rods.

Substitution of the numerical values forf 1 and f 2 from
Eqs.~46! and~47! and into Eq.~42! gives our final result for
the sedimentation velocity up toO(D/L) contributions,

vs5vs
0F 12

6.41
2

9

L

D

2 ln$L/D%2~n'1n i!

L

D
wG . ~48!

The volume fraction prefactor,

a5

6.41
2

9

L

D

2 ln$L/D%2~n'1n i!

L

D
, ~49!

FIG. 1. ~a! The dependence of the coefficienta on L/D according to Eq.
~49! and to Peterson~Ref. 3!. The coefficienta is the first-order correction
to the sedimentation velocity due to finite concentration of the colloidal
rods. The two data points are for silica rods.~b! The coefficienta for
L/D,200. The data point is for thefd virus, as obtained in Sec. IV.
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is plotted as a function ofL/D in Fig. 1 ~where bothn' and
n i are taken equal to 0!. Also plotted is an older result due to
Peterson,3 who predicted

a5
8~3/8!2/3~L/D !1/3

2 ln$L/D%

L

D
. ~50!

In this latter theory backflow is not correctly accounted for,
hydrodynamic interactions are orientationally preaveraged,
and certain integrals are not precisely calculated but only
estimated. The data points shown in Fig. 1~a! are experimen-
tal results for silica rods, coated with stearyl alcohol and
dissolved in cyclohexane. The data point3 is taken from
Ref. 7. The point+ is an unpublished result from the same
authors. The data point in Fig. 1~b! is a data point forfd virus
at high salt concentration, as obtained in Sec. IV of the
present paper. As can be seen from Fig. 1, the present pre-
diction is virtually equal to that of Peterson forL/D,30, but
large differences are found for large aspect ratios. For large
aspect ratios,a is predicted to vary like;(L/D)2/ln$L/D%, in
contrast to Peterson’s result;(L/D)4/3/ ln$L/D%. For smaller
aspect ratiosa approaches approximately Batchelor’s value
for spheresa56.55, which is probably fortuitous in view of
the approximations made here which limit the results mean-
ingful only for long and thin rods.

IV. EXPERIMENTAL RESULTS

The concentration dependence of the sedimentation ve-
locity predicted by Eq.~49! differs significantly from Peter-
son’s result@Eq. ~50!# only for rods with largeL/D. In our
experiments we have used filamentous bacteriophagefd,
which is a rodlike virus withL/D'130. Other relevant
physical characteristics offd, are its lengthL5880 nm, its
diameterD56.6 nm,8 and its density of 1.285 mg/ml.9 Be-
cause of its largeL/D ratio the virus is a semiflexible rather
then a rigid rod characterized with persistence length of 2.2
mm.10 Its linear charge density is 10e2/nm atpH8.2.11

We have grown thefd virus according to standard pro-
cedures of molecular biology described in Ref. 12. The virus
suspension was first purified in a cesium chloride density
gradient and then extensively dialyzed against tris buffer at
pH8.15 and at the desired ionic strength for the sedimenta-
tion experiments. After that the virus was concentrated by
ultracentrifugation and from this stock solution a series of
samples with different concentrations were prepared. The
sedimentation velocity was measured on a Beckman XL-A
analytical ultracentrifuge equipped with UV absorbance op-
tics. Most of the experiments were done at 25 °C and at a
centrifugal force equal to 45 500 g~25 000 rpm!. Before each
sedimentation experiment the sample and rotor were allowed
to equilibrate at the desired temperature for a few hours.
Sedimentation data showed some unexpected features, inter-
fering with straightforward calculation of the sedimentation
coefficient. For this reason we have added Appendix C,
where a detailed analysis of our data is given.

The measured sedimentation velocity for a range of vol-
ume fractions offd from dilute solution up to a stable
nematic phase are shown in Fig. 2. All the samples in these
measurements were kept at 8 mM ionic strength. The sedi-

mentation velocity of rods in the isotropic phase uniformly
decreases with increasing concentration. After Ref. 13 we
have tried to fit our experimental data to a functional form
Sf5S0(12pf)n, whereS0 is the sedimentation velocity at
infinite dilution andf is the volume fraction of rods. The
experimental values of sedimentation velocity are reported in
Svedbergs where 1S510213s21. As seen from Fig. 2 we
obtain a reasonable fit to the experimental data in the isotro-
pic phase and find that the sedimentation velocity at infinite
dilution is S0546.0 for the value of constantsn521/3 and
p53600. After linearizing our fitted formula we find that the
volume prefactora'1200 is much larger then predicted by
Eq. ~49!. The reason for such a high value of slopea is the
low ionic strength at which the experiment was performed.
The same increase ina with decreasing ionic strength is
observed in sedimentation of spherical particles.14,15Also we
note that in this case the region where the sedimentation
velocity varies linearly with rod concentration is limited to
very low volume fraction of rods.

It is a well-known fact that elongated rods at high vol-
ume fractions undergo a first-order phase transition to a liq-
uid crystalline nematic phase.16 The nematic phase is char-
acterized by a short-range liquidlike positional order and
long-range solidlike orientational order of rods.fd virus
forms a cholesteric phase instead of the nematic phase.8,17

Locally the cholesteric phase is equivalent to nematic, how-
ever on a macroscopic scale the average direction of mol-
ecules in a cholesteric phase forms a helix. The free energy
difference between a cholesteric phase and a nematic phase
is very small and although our experiments are performed on
the cholesteric phase only, we expect that our results are

FIG. 2. Dependence of sedimentation velocity of rods measured in Sved-
berg’s@Eq. ~C3!# on the average volume fraction offd at an ionic strength of
8 mM, pH 8.2. The equation of the fitted curve isS(f)546.0(1
13600f)21/3. A sample made with a volume fraction between the two
dashed vertical lines is unstable and will spontaneously phase separate into
an isotropic phase at volume fraction of 0.0081 and a nematic phase at
volume fraction 0.0093. When rods are sedimented in the nematic phase of
initial volume fraction as indicated in the nematic region of the plot, we
observe two sedimenting boundaries with two different velocities and two
different concentrations. The sedimentation velocity of the faster moving
component is indicated with closed circles, while the sedimentation velocity
of the slower moving boundary is indicated with closed squares. The actual
volume fraction of the slower moving component is approximately constant
at 0.0081, implying that that component is in the isotropic phase. The con-
centration of the faster component increases with the average concentration
and is always concentrated enough to be a nematic phase.
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generic and would hold for a nematic phase of hard rods as
well.

Bacteriophagefd in the cholesteric phase exhibits quali-
tatively new behavior when placed in a centrifugal field. In-
stead of a single sedimenting boundary and single plateau we
observe two boundaries with two plateaus sedimenting at
different velocities, as shown in Fig. 3. To confirm that this
change in sedimentation behavior is indeed due to the for-
mation of the nematic phase we have made a sample that
coexists between the isotropic and nematic phase. After the
sample had phase separated into macroscopically distinct co-
existing phases, each phase was sedimented separately. In
the isotropic phase there was no sign of a second boundary,
while in the nematic~cholesteric! phase we observed a fast
sedimenting second boundary that was slightly more concen-
trated then the first component. On one hand, the slow com-
ponent had a plateau concentration and a sedimentation ve-
locity that was almost independent of the average
concentration. On the other hand, the sedimentation velocity
of the faster moving component rapidly decreases with in-
creasingfd concentration and at the same time the difference
between the plateau concentrations of the two components
increases with increasing average concentration.

The unstable sedimentation of colloidal rods in the nem-
atic phase has a similar origin to the self-sharpening effect
described in Appendix C. The reason for the instability is the
discontinuous jump in sedimentation velocity that occurs at
the isotropic–nematic phase transition as is shown in Fig.
2.18 The denser nematic phase sediments at a significantly
higher velocity then a more dilute isotropic phase. Initially a
stable nematic phase occupies the whole sample length.
When the centrifugal field is turned on a sharp sedimenting
boundary starts moving toward the bottom of the container.
Below this boundary~to the right! the rods are still in the
nematic phase while above it the concentration of rods is
very low and therefore they are in the isotropic state. This

occurs because some particles will inevitably diffuse against
the centrifugal field from a highly concentrated plateau into
the dilute region. As this happens they simultaneously un-
dergo a transition from the nematic to the isotropic phase.
Since the sedimentation velocity of rods in the isotropic
phase is much lower than in the nematic phase, the probabil-
ity of the rods diffusing from the isotropic phase back into
the nematic phase is virtually zero. It is this asymmetry that
results in a continuous flux of particles from the nematic into
the isotropic phase and contributes to the formation of the
second plateau in the isotropic phase that is moving at a
slower speed. The concentration of the rods in the isotropic
plateau will be very close to the concentration of isotropic
rods coexisting with the nematic phase due to the self-
sharpening effect because dilute isotropic rods will catch up
with more concentrated isotropic rods. However, the highest
concentration the isotropic rods can attain is the coexistence
concentration between the isotropic and nematic phases, as
long as the nematic phase sediments faster than the isotropic
phase. Indeed, this is very close to what we observe in Fig. 3.
Another experimental observation corroborating our expla-
nation is that the sedimentation velocity and concentration of
the slower isotropic plateau does not change significantly
with average concentration of rods, as seen in Fig. 2.

Since the theory presented in this paper is valid only to
first order in concentration of rods, to obtain an accurate
value of the prefactora in Eq. ~49! we have made additional
measurements in the dilute to semidilute range. Our results
are presented in Fig. 4. We note that the overlap to semidi-
lute concentration forfd with L50.88mm is at volume frac-
tion of 5.931025. Unlike the previous measurements, we
have done these measurements at high ionic strength where
the behavior of charged rods is expected to approach the
behavior of hard rods. Additionally at high ionic strength we
expect the sedimentation velocity to have a linear depen-
dence on volume fraction of rods up to higher values of
volume fraction. The results for ionic strength of 50 and 100
mM are shown in Fig. 4. The volume prefactor in Eq.~49! at
50 mM ionic strength isa5450640 and at 100 mM ionic
strengtha5440660. We have repeated the experiment at
100 mM ionic strength on a different analytical Beckman
XI-A ultracentrifuge and obtained the following result:a
5490650. We conclude thata5470650, which is the re-
sult plotted in Fig. 1~b!. Since the values of the coefficienta
do not change much with changing ionic strength from 50 to
100 mM we conclude that the charged rods have approached
the hard rod limit. Note that because of its largeL/D ratio fd
is slightly flexible with a persistence length which is 2.5
times its contour length.9 Still for the experimentally deter-
mined parameters offd, which are L5880 nm and D
56.6 nm our experimental results compare favorably to the
Eq. ~49!, which predicts the value ofa5488 ~see Fig. 1!. In
contrast, the previous result due to Peterson in Eq.~50! pre-
dicts a lower value ofa5288.
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FIG. 3. A concentration profile of sedimentingfd virus in a nematic~cho-
lesteric! phase taken at two different times. Instead of a single moving
boundary and a single plateau we observe two moving boundaries and two
plateaus. Increased absorbance at the bottom of the container is due to the
accumulation of the virus particles. Peak ‘‘b’’ marks the fast sedimenting
nematic boundary while peak ‘‘a’’ marks the slow sedimenting isotropic
boundary. The two curves are offset for clarity. The concentration of the
initially uniform nematic sample was 13 mg/ml. The concentration of the
coexisting isotropic and nematic phases at 8 mM ionic strength is 10.5 and
12 mg/ml, respectively.
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APPENDIX A: HYDRODYNAMICS OF ROTATING
RODS

1. Flow field generated by a rotating rod

Consider a rod with its center at the origin, which rotates
with an angular velocityV. The angular velocity is decom-
posed in its component perpendicular and parallel to the rods
center line,

V'5@ Î2ûû#"V, ~A1!

Vi5ûû"V, ~A2!

Due to the linearity of the governing hydrodynamic equa-
tions, the flow fields generated by a rod rotating alongV'

andVi may be calculated separately and added to obtain the
flow field of the rod rotating alongV.

Let us first consider a rod rotating with an angular ve-
locity V' . The flow field that is generated by this rotating
rod is given by the general equation~2!. The relative change
of the velocity of the beads is;1/j . For beads further away
from the origin one may therefore consider the velocity over
larger groups of beads as being virtually constant. The force
on beadj is then proportional to its own velocity,

Fj
h52CV'Ãr j52CDjV'Ãû, ~A3!

whereC is an as yet unknown proportionality constant. This
expression is not valid for beads close to the center of the
rod: For these beads the forces may have a different direction
than their velocity. The fluid flow field generated by a long
and thin rod, however, is primarily determined by the rela-
tively large velocities of the beads further away from its
center. We may therefore use Eq.~A3!, except for relatively
few beads close to the center and near the tips of the rod.
Sincer j5 jD û, the torque is thus found, to leading order in
D/L, to be equal to

T'
h 5 (

j 52n/2

n/2

r jÃFj
h52CD2

1

12S L

D D 3

ûÃ~V'Ãû!

52CD2
1

12S L

DD 3

V' , ~A4!

sinceV' is perpendicular toû. It is used here that( j 51
k j 2

5 1
6k(k11)(2k11). First of all, the constantC is calculated

self-consistently from Faxe´n’s theorem in the form of Eq.
~10!. Multiplying both sides of Eq.~10! by r j3, using that
r j3vj5 j 2D2V' , and summation over beads, leads to

1

12S L

D D 3

D2V'52
1

3ph0D
T'

h

1
CD

8ph0
S L

DD 3

g~L/D!V' , ~A5!

where the functiong is defined as

g~L/D !5
1

~n11!3 (
j 52n/2

n/2

(
i 52n/2,iÞ j

n/2

i j F 1

u i 2 j u

1
1

12

1

u i 2 j u3G . ~A6!

For long and thin rods the summations may be replaced by
integrals, leading to

g~L/D !5 1
6 ln$L/D%, ~A7!

up to leading order inD/L. Substitution of Eq.~A4! for the
torque yields a single equation forC, yielding, again up to
leading order,

C5
4ph0D

ln$L/D%
. ~A8!

Hence, from Eq.~A4!,

V'52
3 ln$L/D%

phoL3 T'
h . ~A9!

The flow fieldu' that is generated by a rotating rod may now
be obtained from Eq.~4! to within the same approximations
that were discussed in Sec. II A as

u'~r !52 (
j 52n/2

n/2

T~r2r j !"Fj
h

5
4ph0D2

ln$L/D% (
j 52n/2

n/2

T~r2r j !"~V'Ãjû!. ~A10!

FIG. 4. ~a! Concentration-dependent sedimentation velocitySr @Eq. ~C5!#
for fd at 50 mM ionic strength. The data are fitted to a linear functionSr

545.3220980f. The solid line is given by Eq.~C6!, which yieldsaS0 .
The overlap volume fraction forfd with L5880 nm is 5.931025. ~b!
Concentration-dependent sedimentation velocity forfd at 100 mM ionic
strength. The data are fitted to a linear functionSr545.9220450f.
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Replacing the sum over beads by a line integral, we thus find

u'~r !5
4ph0

ln$L/D%
E

2L/2

L/2

dl T~r2r p2 l û!"~V'Ãl û!,

~A11!

wherer p is the position coordinate of the rod.
Next consider a rod rotating with an angular velocity

Vi . For this case we have to resort to Faxe´n’s theorem for
rotational motion of a bead, which reads

Vi52
1

ph0D3 T j
h1

1

2
¹ jÃu0~r j !, ~A12!

where, as in the translational Faxe´n’s theorem~7!, u0 is the
fluid flow velocity that would have existed in the absence of
bead j. The first term on the right-hand side is just Stokes
rotational friction of a single bead in an unbounded fluid,
while the second term accounts for hydrodynamic interaction
between the beads. The important thing to note here is that
the fluid flow generated by a single rotating bead is now
equal to

uj~r !5S D/2

ur2r j u
D 3

ViÃ~r2r j !, ~A13!

so that this fluid flow is 0 along the entire center line of the
rod. This implies that hydrodynamic interaction between the
beads is unimportant for this case. For a long and thin rod
rotating along its center line, each bead experiences a rota-
tional friction that is practically equal to the Stokes friction,
as if each bead were alone in an unbounded fluid. As a result,
the total torque on the rod is simply the sum of the Stokesian
torques on the beads, so that it follows immediately from
Faxén’s theorem~A12! that

Vi52
1

ph0D2L
Ti

h . ~A14!

Furthermore, the total fluid flowui is simply the sum of the
fluid flows ~A13! generated by the rotating beads as if they
were alone in an unbounded fluid, since hydrodynamic inter-
action between the beads is unimportant in the present case.
Replacing the sum by a line integral thus yields

ui~r !5
D2

8 E
2L/2

L/2

dl
1

ur2r p2 l ûu3 ~ViÃ~r2r p!!. ~A15!

The fluid flow u5u'1ui generated by a rotating rod
with an arbitrary angular velocityV5V'1Vi follows by
combining Eqs.~A1! and ~A2! and ~A10! and ~A15!,

u~r !5
4ph0

ln$L/D%
E

2L/2

L/2

dl T~r2 l û!"~VÃl û!

1
D2

8 E
2L/2

L/2

dl
1

ur2r p2 l ûu3 ~~ ûû"V!3~r2r p!!.

~A16!

This approximate expression will be used in the following
paragraph to obtain an expression for the mobility matrices
M1 j

TR , j 51,2.

2. Calculation of M TR

In order to calculate the velocityv2 that rod 2 acquires in
the flow field~A16! generated by a rotating rod 1, we apply,
without further discussion, the same ‘‘mean-field’’ approach
as in the previous section. The velocityv2 is approximated
by taking the fluid flow field generated by the rotating rod as
a constant, equal to the average of the actual field over the
center line of the rod. Hence,

v25ū2
ln$L/D%

4ph0L
@ Î1û2û2#"F2

h , ~A17!

where the average flow field in terms of the torque on rod 1
follows from Eqs. ~A1!, ~A2!, ~A9! and ~A14!, with V
5V1 , the angular velocity of rod 1 andT1

h the torque on rod
1,

ū5
12

L4 E
2L/2

L/2

dl1E
2L/2

L/2

dl2T~r211 l 2û22 l 1û1!"~ l 1û1ÃT1
h!

1
1

8ph0L2 E
2L/2

L/2

dl1E
2L/2

L/2

dl2

3
1

ur211 l 2û22 l 1û1u3 ~r211 l 2û2!Ã~ û1û1"T1
h!.

~A18!

By definition the following ‘‘mean-field’’ expression for the
translational–rotational mobility matrices are thus obtained
~after an interchange of the indices 1 and 2!;19

M11
TR50, ~A19!

M12
TR5

12

L4 E
2L/2

L/2

dl1E
2L/2

L/2

dl2l 2û2ÃT~r121 l 1û12 l 2û2!

1
1

8ph0L2 E
2L/2

L/2

dl1E
2L/2

L/2

dl2

3
1

ur121 l 1û12 l 2û2u3 @ û2Ã~r121 l 1û1!#û2 .

~A20!

A nonzero contribution toM11
TR stems entirely from reflection

contributions, since a pure rotation of a single rod in an
unbounded fluid does not induce a translational velocity of
the same rod. As mentioned before, reflection contributions
are small in the isotropic state, since the typical distance
between the beads of different rods is of the orderL.

APPENDIX B: SEDIMENTATION VELOCITY FOR RODS
INTERACTING WITH HARD CORE REPULSION

As a first step in the evaluation of the integrals in Eq.
~43! for f 1 , the Fourier transform of the Oseen tensor
~T(k)5(1/h0k2)@ Î2 k̂k̂#, with k̂5kÕk! is substituted, and
the integrations with respect tol 1 andl 2 are performed, with
the following result:
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f 152
1

8p5DL E dk k22 R dû1 R dû2E dr12

3@g~r12,û1 ,û2!2x f~r1ur2 ,û2!#

Ãexp$ ik"r12% j0S 1

2
Lk"û1D j0S 1

2
Lk"û2D , ~B1!

where

j 0~x![
sin$x%

x
. ~B2!

Consider the integral with respect tor12,

I[E dr12@g~r12,û1 ,û2!2x f~r1ur2 ,û2!#exp$ ik"r12%.

~B3!

Replace the expression in the square brackets by (g21)
1(12x f). The integral over 12x f is easily found to be
equal to

E dr12@12x f~r1ur2 ,û2!#exp$ ik"r12%

5
p

4
D2Lj0S 1

2
Lk"û2D , ~B4!

while the integral overg21 is equal to

E dr12@g~r12,û1 ,û2!21#exp$ ik"r12%

522DL2uû1Ãû2u j0S 1

2
Lk"û1D j0S 1

2
Lk"û2D . ~B5!

These results are valid forkD!1 ~say kD,0.2!, while, in
addition, Eq.~B5! is valid for orientations whereD/L!uû1

3û2u. As it will turn out, thekD dependence is of no impor-
tance for long and thin rods, since convergence of the wave
vector integral is assured by thekL-dependent functions,
which tend to zero for wave vectors for which, indeed,kD
!1. Moreover, the angular integration range, pertaining to
orientations where (D/L)/uû13û2u is not small, vanishes for
long and thin rods. Substitution of the results~B4! and~B5!
into Eq. ~B1! for f 1 , and noting that after integration over
orientations the dependence on the directionk̂ of the wave
vector is lost, so that its direction may be chosen along thez
direction, yields~with x5 1

2kL!

f 15
2

p4 E
0

`

dx R dû1 R dû2 j 0
2~x,z2!

3F uû1Ãû2u j 0
2~xz1!2

p

8

D

L
j 0~xz1!G . ~B6!

with zj , j 51,2, is thez component ofûj . The second term
between the square brackets is anO~D/L! contribution as
compared to the first term and may be neglected. Transform-
ing the orientational integrals to spherical coordinates, for
which zj5cos$Qj%, and using~with C5w12w2!,

uû1Ãû2u5@12~cos$Q1%cos$Q2%

1sin$Q1%sin$Q2%cos$C%!2#1/2, ~B7!

finally yields Eq.~46! for f 1 .
Next consider the evaluation of the integrals in Eq.~44!

for f 2 . That the integrals are convergent follows from the
Taylor expansion,

1

ur122au
5

1

r 12
1a"¹

1

r12
1

1

2
aa:¹¹

1

r12
1¯ . ~B8!

Using this in Eq.~44! and integration with respect toû1

shows that the integrand varies like;r 12
24 for large r 12,

since¹2r 12
2150 for r 12Þ0. Following the same procedure as

mentioned previously one finds

f 25
1

2p3DL E dkE
21

1

dz1E
21

1

dz2

3F ~2p!3d~k!2
p

4
D2L j 0S 1

2
Lkz2D G

3 j 0S 1

2
Lkz2D j 0~ 1

2 Lkz1!21

k2 , ~B9!

where d is the delta distribution. The second term in the
square brackets is easily seen to beO~D/L!, using the same
integration tricks as used previously for the evaluation off 1 .
For the evaluation of the delta distribution contribution, the
integrand can be expanded in a power series expansion ink.
Using thatj 0(x)512x2/61¯ , results in Eq.~47! for f 2 .

APPENDIX C: MEASUREMENT OF SEDIMENTATION
VELOCITY OF fd VIRUS WITH ANALYTICAL
ULTRACENTRIFUGE

An analytical centrifuge measures the concentration of
sedimenting colloid along the centrifugal field. From a single
run in an analytical ultracentrifuge we obtain a time se-
quence of plots usually taken every few minutes. A represen-
tative sequence of these plots is shown in Fig. 5. Each plot in
the series indicates thefd concentration as a function of ra-
dial position in the cell at that particular time. The concen-
trations of the dilute virus solutions were determined with
the extinction coefficients of 3.84 mg21 cm2 at 270 nm.9 For

FIG. 5. Data obtained from an analytical centrifuge. A time series of thefd
concentration as a function of radial position in the centrifuge taken at 6.5
min intervals with ‘‘a’’ the first scan and ‘‘f’’ the last. The steep step in
concentration represents the sedimentation front, which moves away from
the centrifuge rotation axis with time. In this particular case the centrifuge
was spun at 25000 rpm and the centrifugal~sedimenting! field points from
left to right. The sharp peak ‘‘x’’ at the radial position of 5.95 cm is due to
refraction by the air–water meniscus. Radial dilution accounts for the di-
minishing plateau concentration with increasing time.
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samples with higher concentration the solution is optically
opaque at 270 nm and therefore we measure absorbance at
progressively higher wavelengths, which correspond to a
lower extinction coefficient offd. The sedimenting particles
in Fig. 5 move from left to right. The water–air interface is
indicated by a sharp peak located at radial position of 5.95
cm that is due to refraction by the meniscus. Note that this
peak does not move as a function of time, indicating that the
container does not leak. As the rods start sedimenting toward
the cell bottom, the region at the top of the solution~to the
right of the air–water interface and to the left of the sedi-
mentation front in Fig. 5! is depleted of virus as indicated by
the absence of absorption. Also the value of the concentra-
tion of rods in the plateau region, always to the right of the
depleted region, is decreasing as the bulk of the sample
moves toward the bottom of the container. The reason for
this is that the walls of the cell are not parallel to each other,
but instead follow the lines of centrifugal field in order to
minimize convective disturbances, an effect referred to as
‘‘radial dilution.’’ 20 Between the flat plateau region and the
depleted region there is a sharp boundary.

At higher concentrations offd we observed the appear-
ance of a sharp peak at the sedimenting boundary as is
shown in Fig. 6. The peak height increases with increasing
concentration while the magnitude of the peak is indepen-
dent of the wavelength and thus this peak cannot be due to
absorption of thefd, which is wavelength dependent. The
probable cause of the peak is the refraction of incident light
due to the steep gradient in the virus concentration and hence
the refractive index at the sedimenting boundary. As the in-
cident light is refracted away from the detector, less light is
collected by it and this results in apparent increased absorp-
tion of the sample. The peak at the water/air meniscus has
the same origin.

Two factors that determine the shape of the sedimenting
boundary are the diffusion constant and the self-sharpening
effect.20 The diffusion of the particles leads to gradual

spreading of the initially very sharp boundary. This diffusion
of particles is countered by the self-sharpening effect, which
is due to the concentration dependence of the sedimentation
velocity. On one hand, any molecule lagging behind the
boundary is in a more dilute environment and will therefore
sediment at an enhanced velocity. On the other hand, the
particles in the plateau region are in a more concentrated
environment and their sedimentation will be retarded. As a
consequence the boundaries will self-sharpen. In a suspen-
sion of elongated particles the self-sharpening effect will be
much stronger then in a suspension of globular particles be-
cause the volume prefactora in Eq. ~49! is much larger for
elongated particles then for globular particles. The pro-
nounced self-sharpening effect leads to hypersharp bound-
aries, resulting in a steep gradient of refractive index which
in turn causes the artifacts shown in Fig. 6. In globular col-
loids these effects are usually not observed.

In sedimentation analysis it is assumed that the rate of
movement of the sedimentation boundary is approximately
equivalent to the sedimentation velocity of the particles in
the plateau~bulk! region. To compare results from different
runs it is common to express the sedimentation velocity in
units independent of centrifugal force as follows:

S5
1

v2r

dr

dt
5

1

v2

d ln r

dt
. ~C1!

The sedimentation velocity unit is called a Svedberg~S!,
with 1S5@10213s21#. We definer as the radial position at
the sedimentation boundary where the virus concentration is
equal to half the concentration of the plateau region. This
quantity is easily obtained from experimental data for
samples at low concentration. For samples at higher concen-
tration, where we observe a peak at the sedimenting bound-
ary due to refraction of light, we definer as the radial posi-
tion of the highest point of the peak. A typical plot of the
logarithm of r againstv2t used in the determination of the
sedimentation constant is shown in Fig. 7. Surprisingly, we
found that a linear function provided an inadequate fit to our

FIG. 6. A series of plots offd concentration as a function of radial position
at time intervals of approximately 12.7 min with ‘‘a’’ the first scan and ‘‘d’’
the last. The difference between this series and those in Fig. 5 is that here
the concentration offd is higher and the rotation speed was 20 000 rpm. The
peak seen at the sedimenting boundary is an artifact of the detection system
and is due to the refraction of light at a sharp step in the refractive index at
the sedimenting boundary. Radial dilution lowers the plateau concentration
with time. A similar peak occurs at the air/water meniscus ‘‘x,’’ which is
stationary.

FIG. 7. Position of the sedimentation boundary plotted againstv2t. The
circles represent measurements which were taken approximately every 2.5
min. The lines represent the second-order polynomial fit to the data@Eq.
~C2!#. The plot with a larger slope corresponds to the sedimentation offd
virus in 100 mM ionic strength at a volume fraction of 7.7531025 at 25 000
rpm. The other plot is for a higher volume fraction offd equal to 2.63
31024.
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data. When the sedimentation data are collected between ra-
dial positions of 6.1 and 6.8 cm a polynomial of second order
fits the data much better:

ln r 5A1Bv2t1Cv4t2. ~C2!

We introduce the experimentally observed sedimentation
constantSr by combining Eqs.~C2! and ~C1!.

Sr5
d ln r

dv2t
5B12Cv2t. ~C3!

From Eq.~C3! we see that the experimentally measured sedi-
mentation velocity is not a constant but depends on the po-
sition of the measurementr of equivalent timev2t at which
the sedimentation front is found at positionr. The reason for
this unexpected behavior is not clear, but we assume it is an
instrumental artifact. There is no physical reason to believe
that the sedimentation velocity is a function of time or of
radial position in the cell. In Table I we see that the coeffi-
cient C, obtained when the quadratic polynomial in Eq.~C2!
is fitted to data in Fig. 4~a!, is independent of concentration.
This is another indication that this artifact is due to the in-
strument.

Theoretically, the constantB in Eq. ~C3! should be equal
to the concentration-dependent Svedberg constant:

Sf5S0~12af! ~C4!

and the constantC should be zero. Instead, we have found
that the experimental Svedberg@eq. ~C3!# is described by

Sr5Sf1offset5S01offset2S0af, ~C5!

where ‘‘offset’’ depends on position in the centrifuge, but is
independent of colloid concentration.S0 is the Svedberg
constant of the rods in the limit of zero concentration. How-
ever, the value of slope

dSr

df
5aS0 ~C6!

is independent of radial position~or equivalentlyv2t! where
we evaluate Eq.~C3! as shown in Table I. The measurement
artifact only introduces a position-dependent offset in the
sedimentation velocity which affects the measured value of
S0 . From a few measurements where we did not observe
measurement artifacts (C50) we obtained the value ofS0

547. Since this is in good agreement with previous measure-
ments we use this value throughout our analysis.21

It is important to note that the dependence ofSr on po-
sition r shown in Fig. 7 is not due to the decreasing concen-
tration of rods in plateau, which in turn is due to radial dilu-
tion. To show this we have made two measurements. In a
first measurement we evaluated the sedimentation velocity at
the point where the sedimenting boundary is close to the
bottom of the container. At this time, due to radial dilution,
the plateau concentration is about 70% of the initial concen-
tration. In the second run our initial concentration was 70%
of the concentration of rods in the first run. In this run we
evaluated the sedimentation velocity right at the beginning of
the run. We find that sedimentation velocities obtained in
these two ways are vastly different, which indicates that the
systematic errors described are not due to radial dilution.
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TABLE I. The values of constants obtained from Eq.~C3! being fitted to
data from Fig. 4~a!. The second column indicates the value of the sedimen-
tation velocitySr evaluated at the start of the sedimentation experiment at
v2t50 or equivalentlyr 56.1 cm. The third column indicates the value of
parameterC in Eq. ~C3!, which is independent of concentration. If we evalu-
ate Eq.~C3! for the sedimentation velocity at the end of the sedimentation
experimentr 56.8 cm, we obtain the values of the sedimentation velocity
shown in the fourth column. Note that the value of the slopeaS0 @Eq. ~C5!#
does not depend on the radial position. The value ofaS0 from the data
evaluated atr 56.1 cm is 20 500 and atr 56.8 cm is 21 000. We use the
valueS0547 to obtaina.

Volume fraction S6.1 cm/10213 s21 C S6.8 cm/10213 s21

4.3131025 44.1 1.35310223 49.5
4.3131025 44.5 1.27310223 49.6
7.2131025 44.1 1.21310223 48.9
1.1131024 43.3 1.26310223 48.3
1.6431024 41.3 1.17310223 45.9
2.1831024 40.4 1.27310223 45.5
2.9431024 39.4 1.35310223 44.8
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