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In this paper we first develop an approximate theory for the leading order concentration dependence
of the sedimentation coefficient for rodlike colloids/polymers/macromolecules. To first order in
volume fractiong of rods, the sedimentation coefficient is written asde. For large aspect ratios

L/D (L is the rod lengthD its thicknes$ « is found to vary likex(L/D)?/In(L/D). This theoretical
prediction is compared to experimental results. Then, experimerfts\orus are described, both in

the isotropic and nematic phase. First-order in concentration results for this very long and thin
(semiflexible rod are in agreement with the above-mentioned theoretical prediction. Sedimentation
profiles for the nematic phase show two sedimentation fronts. This result indicates that the nematic
phase becomes unstable with the respect to isotropic phase during sedimentati@®00©
American Institute of Physic§S0021-9606)0)51338-5

I. INTRODUCTION pared to the above-mentioned theory. In addition, sedimen-

tation experiments at larger concentrations, including the
There is extensive literature concerned with sedimentanematic phase, are performed.

tion behavior of spherically shaped colloidal particlés a

review see Ref. )1 Essentially exact predictions can be made

for the sedimentation velocity of spherical colloids to first

order in concentratiof.For nonspherical colloids a similar

exact prediction is nonexistent. The only attempt to calculaté|, HYDRODYNAMIC INTERACTION BETWEEN LONG

the first-order concentration dependence of the sedimentatigtND THIN RODS

velocity for rodlike colloids we are aware of is due to

Petersort. This theory is based on approximate, orientation-  |n order to calculate sedimentation velocities, the con-

ally preaveraged hydrodynamic interactions between the cohection between translational and angular velocities, and hy-
loidal rods and a rather crude estimate of certain multipleyrodynamic forces and torques must be found. In the present
integrals that represent the ensemble averaged velocity. Agction such a relation will be established for two rods on the
yet there are no accurate expressions for hydrodynamic inzoqne_prager level, that is, with the neglect of reflection

teraction tensors for rods. In Sec. Il, we calculate these inz . wibutions between the rods. Considering only two rods

teraction tensors in a mean-field approximation. In Sec. IIIIimits the discussion on the sedimentation velocity to first

we use this approximate expression for the hydrodynamic

X . X ) - . order in concentration. Reflection contributions to the two-
interaction functions to derive an explicit expression for the L . . .

) . . - . . rod hydrodynamic interaction functions and multibody rod
first order in concentration coefficient of the sedimentation

velocity as a function of the aspect ratio of the rods. Thismteracuons are both probably small in comparison to the

expression is found to agree remarkably well with Peterson’godne_Prager term;, due to thg fact that the distance be-
result for aspect ratios less than about 30. For larger aspel/€€n segments of different rods is of the order of the length
ratios our result for the first order in concentration coefficient®f the rods, at least in the isotropic state. A Rodne—Prager
is much larger than Peterson’s prediction. In Sec. 1V, sedi@Pproximation could therefore work quite well for long and
mentation experiments on filamentous bacteriopHeggrus thin rods, although explicit results for reflection contribu-
are discussed. Experiments are done at low concentration {#®ns should be obtained to confirm this intuition.

find the first-order concentration dependence, which is com-  For the low Reynolds numbers under consideration, the
translational velocitieg;, j=1,2, and the angular velocities
9Electronic mail: philipse@chem.uu.nl Q; are linearly related to the hydrodynamic fordé% and
YAuthor to whom all correspondence should be addressed. torquesT? that the fluid exerts on the rods,

0021-9606/2000/113(18)/8368/13/$17.00 8368 © 2000 American Institute of Physics
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MLT MIZT ME MI; Eh the total force that the fluid exerts on bgativith the neglect
Vi T T R R ' of end effects this force is equal for each bekgs F'/(n
Va | _ Ma1 Mz Mz My R +1)=(D/L)F", with F" the total force on the rod. Equation
LV} MET MBI MBR MRR|T| TD |- (4) thus reduces to
L vy omy omEr w3
1) u(r):_f.,Z T(r—rj)-F" (6)
j=-nl/2

The superscripts T” and “ R” refer to translation and rota-

tion, respectively, while the superscriph™ on the forces  The forceF" is calculated in terms of the translational veloc-

and torques refer to their hydrodynamic origin. On theity of the rod self-consistently from Ed6) using Faxa's

Brownian time scale, the 83-dimensional mobility matri- theorem for translational motion for each spherical bead,

cesM are functions of the positions of the centers of the twowhere the velocity; of beadj is expressed in terms of the

rods and their orientation. force th on bead and the velocityuy(r;) at the center of the
As it will turn out, in order to find the sedimentation bead that would have existed without that bead being

velocity, we need expressions fbt]", for which approxi-  present,

mations are obtained in Sec. IIB. As a first step, the fluid L .

flow field generated by a translating rod must be calculated. _ h 2y2

This is thegsubject of gec. IA. Rotgtion of rods also plays a ViT T 37D Fj+ Uo(ry) + 22 D7Vio(r), ™

role in sedimentation, but as it will turn out, to first order in . . , .

concentration and with the neglect of hydrodynamic reflec—WhereVJ IS th_e gradient c_>per_at_or With respet_:trg_o The flrs_t

tion contributions, these do not contribute to the sediment term on the right-hand S'd.e IS Ju.St Stokes friction of a single

ead in an unbounded fluid, while the second term accounts

tion velocity. Explicit expressions pertaining to the hydrody- . . :
namics of rotating rods are derived in the same spirit as foFOr hydrodynamm |qteract|on between the beads. The fluid
flow field ug in turn is equal to

translating rods in Appendix A. Section Il C contains some

concluding remarks. n/2
For the hydrodynamic calculations the rods will be Uo(r)= Z dsS T(r—r")-f*(r"), (8)
thought of as a rigid string of spherical beads with diameter i=—ni2i#j  J oV

D. The length of the rods i&, and there aren+1=L/D

. . wheref is the force per unit area that a surface element of
beads per rod, witin an even integer.

beadi exerts on the fluidn the absence of bead for very
long rods, consisting of many beads, the difference between
A. Flow field generated by a translating rod f, (the corresponding force for the intact jaghdf* may be
neglected: there are only a few neighboring beads for which
the difference is significant, but there are many more beads
further away from beagl for which the difference is insig-

The flow field generated by a rod that consistanefl
beads is given by

n/2

, ) ) nificant. To within the same approximations involved to ar-
U(f>=j§n,2 N.dS T(r=r’)-f(r'), @ rive at Eq.(4), Eq.(8) can then be written as
Vi
whereT is the Oseen tensor, n/2 )
uO(rj):_ifan/Zi;gj T(rj_ri)’Fi . (9)

T(r)= [1+7F], €)

87 70r Substitution of this expression into Faxe theorem(7), and
with 74 the shear viscosity of the solvent afie r/r the unit  using thatr;—r;=(j—i)D0, with G the orientation of the
position vector. Furthermoré(r') is the force per unit area rod, leads to

that a surface element at of beadj exerts on the fluid, and

dVj is the spherical surface of bead~or long and thin rods, V=— 1 (= 1 0
the distances of interest, relative to the positions of the ) 3mnD !} 8mwneD
beads, are those for whict»D, with D the diameter of the ni2 5 1
beads. Now write’=r;+R’" with r; the position coordinate . = _3}
of the jth bead, so thaR’'=D/2, and Taylor expand the i=-m2ixj [li—il 6li—j
Oseen tensor in Eq2) with respect tR’. Keeping only the
first term in this Taylor expansion leads to relative errors of .;:ih_ [T—00]
the orderR’/r~D/L. Up to that order we then find, 870D
n/2 n/2 1 1
- —r)-gh . ——+ ————=|-F", 10
u(r) jzznlz T(r—rj)-F, 4 = S =il iR (10
with where Eq.(3) has been used together with
Fh=— f ds fi(r'), (5) 2 — T_ape
i v, i VeT(r) 47_r7]0r3[| 3ff]. (11
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For pure translational motion, the velocity of each bead is _ 4wyl .1
equal to the velocityw of the rod, so that both sides of Eq. = m { I - 5 Uil |*Vy
(10) can be summed over yielding for the left-hand side
vL/D. Neglecting end effects and replacing sums by inte- 1 .~ h
grals (which is allowed for long and thin rogisit is found =~ A= 500y [1+0,0,]-F
that
=—A-Fl, (15
e IZETL/DS [+ aa]-F". (12 where
70 1 (LR L2
A=—2f dllf dl, T(rop+1,0,—140y), (16)
L) -1 “J-Lr

Notice that the Stokes friction contributigthe first term on

the right-hand side in Eq10)] is logarithmically small in it —r 1. the distance between the centers of the two
comparison to the friction contribution due to hydrodynammrods_ Notice that for distances, between the centers of the

interaction between the beads. In fact, the Stokes contribur—ods larger tharL, the matrixA asymptotes tor (r,;). By
tion is neglected in Eq.12). A matrix inversion, in order to definition the following “mean-field” expressions for the

express=" in terms ofv, and subsequent substitution into Eq. translational mobility matrices are thus obtaingdter an
(6), after rewriting the sum over beads as an integral over th?nterchange of the indices 1 anit 2

center line of the rod, yields

In{L/D} .
TT__ ~A A
4777]0 L/2 1 11— 4777]0'— [|+U1U1], (17)
U(r):m dIT(r—rp—Iﬂ)- |—§00 vV,
—L/2
1 (LR L/2
(13 MI,I:FJ dllf dl, T(rp+1,0,—150,).  (18)
—L/2 —L/2

with r,, the position coordinate of the rod. This is the ap-one might try to device approximate expressions for the ma-
proximate expression for the fluid flow generated by a transgix A, However, sedimentation velocities are obtained as
lating long and thin rod that will be used in Sec. IIB ensemple averages, also with respect to orientations, giving
to obtain an expression for the mobility matricé®;;, ise to integrals with respect 10, and @ ,, which can be
=12 evaluated by numerical integration. ’

B. Calculation of M "7 C. Concluding remarks

In order to calculate the velocity, that rod 2 acquires in The approximations involved in the previous discussion
the flow field (13) generated by a translating rod 1, one gre justified for very long rods, sinc®(1) constants are
should in principle perform a reflection calculation up to neglected against terms of ordeflD}, both by neglecting
very high order: The field generated by rod 1 is scattered bynq effects and replacing sums over beads by integfails
each bead of rod 2 and subsequently reflected back and for{je evajuation of the sums in Faxe theorem in Eq(10)].
between the different beads within rod 2. Such a calculatiory,cp approximations are most important for the diagonal
is hardly feasible analytically. Here, the field generated bymobility matrix MH (notice that factors #fL/D} do not ap-
rod 1 that is incident on rod 2 is approximated by a constanbegr in the off-diagonal matrice! 15 , due to the resubstitu-
fluid flow field u equal to the average of the incident field {jon, of velocities in terms of forcesBoth end effects and the
over the center line of rod 2. This “hydrodynamic mean- naihematical approximations involved in the calculation of
field approximation” is accurate for distances of the orter e diagonal mobility matrixvlLT in Eq. (17) may be accu-
or larger, for which separations the incident field indeed be'rately accounted for by the replacement
comes equal to a constant. For smaller distances between the
rods this procedure provides a semiquantitative approxima- In{L/D}—In{L/D}—, (19
tion. Within this approximation, the velocity of rod 2 imme- o )
diately follows from Eq.(12), with v=v,—U, Fh:Fg’ the With v=v, or v=y a constant, pertaining to translational

total force of the fluid on rod 2, anii=0,, the orientation of motion perpendicular or parallel to the rods orientation, re-
rod 2 spectively. This correction is experimentally significant for

somewhat shorter rod& /D < 20, say, but vanishes relative
to the logarithmic term for very long rods. The actual values

V,=U— In{L/D} [f+ N 02]-F2. (14) of v, andw, for cylindrical rods are equal fo
4ol
v, =—0.84, (20
The average incident flow field follows from Eq4.3) and »,=0.21. (21)

(12), with v=v,, the velocity of rod 1 an@#"=F}, the force
on rod 1, A more accurate expression fdt{] than in Eq.(17) is
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T In{L/D} . _ . mann’s constantT the temperature, anB the probability
1= 4ol [I+0.04] density function for positions and orientationand the ex-
0 ternal forceF®™! due to the gravitational field. Hence,
_ T _ 0 h_ _ t
pp— [v I+(2v—v,)0,04]. (22 Fi/'=V;®+kgTV;In{P}—F°* (29

In the sequel we will use this expression for the mobility Similarly, the total torque is the sum of the hydrodynamic
matrix M1 instead of Eq.(17). The approximations in- torque T, the interaction torque-R;®, the Brownian
volved in the off-diagonal mobility matrices in Eq84) and  torque —kBTfQJ- In{P}, while the torque on each rod due to
(38) are primarily due to the mean-field treatment of thethe homogeneous external force vanishes. Hence,
incident flow field. It is probably a formidable task to im- R ~
prove on these expressions. T'=R;®+kgTR; In{P}, (25)
The use of the more accurate express{@f) for the
diagonal translational mobility matrix also circumvents the
practical problem of calculating volume fractions of colloidal Ri(--)=0XVy () (26)
rod material from given values fdr, D, and number density. ! S ’
For the bead model it is not so clear how the volume of a rodyith V,, the gradient operator with respect dp. Substitu-

H )
must be expressed in terms bfandD. The volume of the  tjon of Egs.(24) and(25) into Eq.(23) for the sedimentation
cylindrical rod is simply equal to#/4)D?L. velocity yields

where the rotation operator is defined as

- _ TT, _ ex
Il. AN EXPRESSION FOR THE SEDIMENTATION Vs=—(My1 [ V1®+ks TV In{P} —F*"]
VELOCITY OF RODS XPVM [V, ® + kg TV, In{P} — F]

The sedimentation of colloidal material induces, through
the presence of the walls of the container, backflow of sol-
vent. The backflow velocity is inhomogeneous, and varies on +FVMI§' [ﬁzcb + kBTﬁz In{P}]. (27)
the length scale of the container. On a local scale, however,
the backflow may be considered homogeneous, and the sedi- The next step in the explicit evaluation of these en-
mentation velocity can be calculated relative to the localsemble averages is to determine the stationary probability
backflow velocity. Thisrelative sedimentation velocity is a density functionP=P(r,,r,,0,,0,) for the positions and
constant throughout the containexcept possibly in a small orientations of two rods. At this point it is convenient to
region of extentL near the walls of the container, where introduce the pair-correlation functiay defined as
gradients of the backflow velocity are lajgeand depends o . . o
only on the properties of the suspension. A formal evaluation P(r1,r2,01,05)=P(ry,00)P(r3,05)9(r 12,01, 05), (28)
of the sedimentation velocity directly from E{L), by en-  where P(r;,;) is the probability density function for the
semble averaging, leads to spurious divergences, which afgsition and orientation of a single rod. For spherical par-
the result of the neglect of the hydrodynamic effects of thejcles in a homogeneous external gravitational field, the prob-
walls of the container which lead to solvent backflow. Batch-gpijjity density function for the position coordinates is simply
elor was the first to deal with these divergences correctlyhe equilibrium function, without an external field, provided

+MIR[RyD + kg TRy IN{P}]

and we will use his arguments hére. _ _ that the particles are identical. The probability density func-
~Ensemble averaging of in Eq. (1) gives the sedimen- tjon differs from the equilibrium function only in case the
tation velocityvs, which is thus found to be equal to relative sedimentation velocity of two spheres is different,
Ve= —(MIT-Fl4+ pVMIT-F + MIR T+ pUMIRTHY, e.g., due to differing masses and/or sizes. For rods, things are

(23)  somewhat more complicated. Even if two rods are identical

. their relative sedimentation velocity generally differs as a

where the angular _b_racke(s) derjote (_ensemble averaging regyit of the fact that the translational friction constant of
with respect to positions and orientations of the rods. Th‘?ods is orientation dependefstee Eq(17)]. The probability

faC.tOI‘SpV.Z N~ N_.l account for the presence WF-1 rod; density function is generally dependent on the external force

which all interact with rod 1 under consideration. The dIVer'due to the fact that rods with different orientations overtake

gence problems mentioned previously grising in the,eXp"Citeach other during sedimentation. Suppose, however, that the
evaluation of the ensemble averages will be dealt with latery, i ontation velocity is so slow, that during a relative dis-
In order to be able to calculate these ensemble averag

. facement of two rods in the gravitational field of the order
the forces and torques must be expressed in terms of t

. d ori ) f the rods. On the B o the lengthL of the rods, each rod rotated many times due
positions and orientations of the rods. On the Brownian imé&, eir grownian motion. The relative sedimentation veloc-

scale there is a balance between all the forces and torques ﬂp of two rods then averages out to zero. For such a case, the
each of the rods, that is, the total force and torque are equ%air—correlation function is only weakly perturbed by the ex-

to zero. The total force in turn is equal to the sum of theyy | fieg. so that we may use its equilibrium Boltzmann
force F;' that the fluid exerts on the rod, the interaction forceform

F} =—V,;® (with ® the total interaction energy of the rods
the Brownian forceFjB’=—kBTVj In{P} (with kg Boltz- g(rq,ro,uq,Uy)=exp—Bd(rq,r,,04,0,)}, (29
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Let us derive the inequality that should be satisfied for Eq.  0=(u(r|r,...,ry,01,...,0y))
(29) to be valid. According to Eq(17), the largest relative
sedimentation velocityAvg of two rods is approximately :J dfl"'f dry é dag - jgdﬁm
equal to
|A | In{l_/D}ll:eXt| (30) Xu(r|rl!'--1rN!011'--10N)P(r11--1rN!011--10N)|

Vg~ .

S 4mpl (39
On the other hand, the time,; required for a rotational where P(rq,...,0y) is the probability density function for
revolution is equal to {rq,...,0n}. Formally, this ensemble average diverges for

L3 the same reason that the sedimentation velocity diverges:
T 7o

— The flow fieldu varies like 1f for large distances due to its
Trot . (31) 0 .
3kgT In{L/D} Oseen contribution. The formally divergent expressig5),

which must be zero for physical reasons, is subtracted from
Eq. (34) for the sedimentation velocity to render this expres-
sion convergent. The field can generally be written as the
L/JAvy  12KgT N gy  Sum of two terms: a term to which the field would be equal

Tt JFLT T (32 in the absence of reflection contributions plus a term that

accounts for the reflection contributions. Within our ap-

Hence, the work provided by the external force to displace 40 reflection contributions are neglected so that only the
colloidal rod over a distance equal to its length should b&,. .o term survives here. Hence

much smaller than a few times the thermal energy of the

Therefore, the condition under which E@9) for the pair-
correlation function is a good approximation is

rods. Substitution of typical numbers shows that this inequal- N

ity is satisfied under normal practical circumstantégur- u(rlrl,...,rN,01,...,0,\,):21 u(r—rj)

thermore, when alignment of the rods during sedimentation :

in a homogeneous suspension is of no importance, the one- for r in the fluid

particle probability density functions in Eq28) are both ]

constants equal to =V for r in a core, (36)

where the fieldu(r —r;), for r in the fluid, is the sum of the
(33)  flow fields in Eq.(13) (with v replaced bw,—u,), and Eg.

(A16) (both considered as a function of the relative distance

We will restrict ourselves here to the most common situ-to the jth rod under consideratipnthat is,
ation where the inequalit{32) is satisfied, and assume neg- .
ligible alignment, so that the probability density function is u(r=rp)=ur(r=rj)+ug(r=ry), (37)
well approximated by Eq€28), (29), and(33). In that case whereur(r—r;) is the fluid flow generated by a translating
many of the terms in Eq27) for the sedimentation velocity rod as given in Eq(13),
cancel: The interaction contributions cancel against the
. . . . . 1 (L2

tBrownlan terms. The sedimentation velocity reduces simply Ur(r—rj) = Ef L/Zdlj T(r_rj_|j0j),|:ext, (38)
(o}

P(rj ,Gj):m.

vS:[<MH>+BV<MH>]-Fe“. (34) where the inverse of Eq(l2) is used, together with"

] T o ) ) =—F® and ug(r—r;) is the field generated by a rotating
Since My, (rap,0y,0p)~1/ry, for large distances, its en- o4 which is similarly given by Eq(A16). Operating on
semble average with respect to position coordinates divergegoth sides of Eq(35) with [dréda P(r,0), whereP(r,0) is
Such a spurious divergence is also found for spherical pakne constant specified in Eq33), and subtraction of the

ticles, and is the result of the neglect of the hydrodynamigegyiting equation from Eq34) for the sedimentation veloc-
effect of the walls of the container. Batchélshowed that a ity yields, for identical rods and to first order in concentra-

formally divergent quantity, which is unambiguously finite o, (renamed ,=r,, r=ry, 0;=0,, andi=0,),
valued on physical grounds, can be subtracted from the en-

semble average, rendering a perfectly well-defined sedimen- Vs=— @Vs+[(M1])+pV(M];)]-F

tation velocity. This finite valued quantity is formally diver-

gent for the same reason that the ensemble averagd bfs — sz dry, § da, é di,[ur(ryy)
divergent, and subtraction accounts for the local hydrody- (4)
namic effects of the walfl.Batchelor's argument is as fol- +UR(F12) T (r1|r2,05) (39)

lows. First define the velocity(r|ry,...,ry,07,...,0y) as

the velocity at a point (either in the fluid or inside a col- Wherey; is the characteristic function that restricts the inte-
loidal rod), given the positiong,...,ry and orientations grations to points which are in the fluid, not inside the core
0;,...,05 of Nrods. In the laboratory reference frame the netof rod 2,

flux of material through a cross-sectional area must be zero.
This means that the ensemble averages ahust be zero.
Hence, =0 forr in the core of rod 2. (40

xi(r|ro,0,)=1 for r in the fluid
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Without interactions the angular velocity of each rod is
simply proportional to the hydrodynamic torque on the same (a)
rod [see Eqs(A9) and(A14)], which hydrodynamic torques 100}
are zero. Since the integral in the above-mentioned expres-
sion for the sedimentation velocity is multiplied by the con-
centrationp, it follows that the rotational fieldiz does not
contribute to first order in the density. For the same reason,
in each term that is multiplied by the concentratis®® may
be expressed with Eq22) in terms of the sedimentation
velocity v2 without interactions, at infinite dilution, as

In{L/D} 1
3wl 6wyl

Peterson

1

0_

S

(v, +v) |F& (41

We thus find the following expression for the sedimentation
velocity, valid to first order in volume fraction:

. fi+f,
~\2In{L/D}— (v, + 1))

L 25 50
+(’)(D/L)>5<p}, L/D

(42) 1000
where the function$, andf, are equal to (b)

1
fl:_mf dr12 % dﬁl é d02

X[g(r12,01,0) = x4(rq|r2,0,)]

L2 Li2 1 I
Xf d|1f dor—"——5—, (43 500
i )i frapt a0y —150y]

Ve=V2

eq.(49)

1 R ~ ~
f2:— mj drlz % dU]_ § dUZXf(rl|r2’u2)
L/2 L2
Xf dllf dI2
—L/2 —L/2

1 1
X {|r12+ 110y — 1,0, B [r1o—1505,] FIG. 1. (a) The dependence of the coefficiamton L/D according to Eq.
(49) and to PetersofRef. 3. The coefficientx is the first-order correction
where expressiond 8) and(38) for the mobility matrixM -H to the sedimentation velocity due to finite concentration of the colloidal

and the fielduT are used, respectively. We also used thatods. The two data points are for silica rods) The coefficienta for
integrals over the Oseen tensor must be proportional to thb/D<200' The data point is for thfel virus, as obtained in Sec. IV.
identity tensor, so that in these integrals the Oseen tensor

may be replaced by the trag@r{T} of that tensor, which,

according to its defining equatid®), is equal to The numerical value fof,; has been obtained by numerical
integration and applies for hard-core interactions, wiigie

(45) equal to 0 when two cores overlap, and equal to 1 otherwise.
The result forf, is independent of the kind of direct inter-

For rods interacting only via a hard-core repulsion, it isaction between the rods.

shown in Appendix B how to reduce the number of integra-  Substitution of the numerical values foy andf, from

Peterson

100 ,p 200

: (44)

TH{T(r)}=

2mnr

tions, leading to the following results: Egs.(46) and(47) and into Eq.(42) gives our final result for
g (= L L i the sedimentation velocity up #©(D/L) contributions,
fl:?f dxf dzlf dzlf dWj3(xz)j3(xz)[1 oL
0 -1 -1 0 6.4+ - —
N Z 2 =v| 1 D - 48
_(2122+ (1_21)(1_22) Vs=Vs 2 |n{L/D}—(Vl+V”) D e ( )
21172
xcog W]+ O(DIL) The volume fraction prefactor,
=6.4--+0O(DIL), (46) 2L
f —2 - O(D/L 4 = 6.4+§5 - 49
2=gp TODL). “7) “ 2In{L/ID}—(v, +1,) D’ 49
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is plotted as a function df/D in Fig. 1 (where bothv, and 50 T T T
v, are taken equal to)0Also plotted is an older result due to ‘
Petersort,who predicted 40 ]

8(3/18)23(L/D)¥? L isotropic nematic
= ——F e = (50)
2In{L/D} D

In this latter theory backflow is not correctly accounted for,
hydrodynamic interactions are orientationally preaveraged,
and certain integrals are not precisely calculated but only
estimated. The data points shown in Fi¢p)lare experimen-

tal results for silica rods, coated with stearyl alcohol and . '
dissolved in cyclohexane. The data poixtis taken from 0.000  0.005 0.010 ) 0.015 0.020

Ref. 7. The poink is an unpublished result from the same volume fraction

authors. The data point in Fig(H) is a data point fofd virus ~ FIG. 2. Dependence of sedimentation velocity of rods measured in Sved-
at high salt concentration, as obtained in Sec. IV of theberg's[Eg.(C3)] on the average volume fraction fafat an ionic strength of
present paper. As can be seen from Fig. 1, the present pré-MM. pH 8.2. The equation of the fitted curve B(¢)=46.0(1

Lo +3600p) 3. A sample made with a volume fraction between the two
diction is virtually equal to that of Peterson fofD < 30, but dashed vertical lines is unstable and will spontaneously phase separate into

large differences are found for large aspect ratios. For largen isotropic phase at volume fraction of 0.0081 and a nematic phase at
aspect ratiosy is predicted to vary like- (L/D)2/|n{|_/D}, in volume fraction 0.0093. When rods are sedimented in the nematic phase of
contrast to Peterson’s resuI{(L/D)‘”?’/In{L/D} For smaller initial volume fraction as indicated in the nematic region of the plot, we

. h . Iv Batchelor | observe two sedimenting boundaries with two different velocities and two
aspect ratiosr approaches approximately Batchelor's va U€ gitferent concentrations. The sedimentation velocity of the faster moving

for spheresy=6.55, which is probably fortuitous in view of component is indicated with closed circles, while the sedimentation velocity
the approximations made here which limit the results meanef the slower moving boundary is indicated with closed squares. The actual
; ; volume fraction of the slower moving component is approximately constant
|ngfu| Only for Iong and thin rods. at 0.0081, implying that that component is in the isotropic phase. The con-
centration of the faster component increases with the average concentration
and is always concentrated enough to be a nematic phase.

S[10"sec ]

IV. EXPERIMENTAL RESULTS

The concentration dependence of the sedimentation ve-
locity predicted by Eq(49) differs significantly from Peter- mentation velocity of rods in the isotropic phase uniformly
son’s resulfEq. (50)] only for rods with largeL/D. In our  decreases with increasing concentration. After Ref. 13 we
experiments we have used filamentous bacteriopifdge have tried to fit our experimental data to a functional form
which is a rodlike virus withL/D~130. Other relevant S;=Sy(1—pe)”, whereS, is the sedimentation velocity at
physical characteristics dfl, are its lengthL=880nm, its infinite dilution and¢ is the volume fraction of rods. The
diameterD=6.6 nm® and its density of 1.285 mg/mIBe-  experimental values of sedimentation velocity are reported in
cause of its largé./D ratio the virus is a semiflexible rather Svedbergs where =10 3s 1. As seen from Fig. 2 we
then a rigid rod characterized with persistence length of 2.2btain a reasonable fit to the experimental data in the isotro-
um 1 Its linear charge density is 80/nm atpH8.21* pic phase and find that the sedimentation velocity at infinite

We have grown thdd virus according to standard pro- dilution is Sy=46.0 for the value of constanis= —1/3 and
cedures of molecular biology described in Ref. 12. The virugp=3600. After linearizing our fitted formula we find that the
suspension was first purified in a cesium chloride densitwolume prefactorr~1200 is much larger then predicted by
gradient and then extensively dialyzed against tris buffer aEq. (49). The reason for such a high value of slopés the
pH8.15 and at the desired ionic strength for the sedimentalow ionic strength at which the experiment was performed.
tion experiments. After that the virus was concentrated byrThe same increase in with decreasing ionic strength is
ultracentrifugation and from this stock solution a series ofobserved in sedimentation of spherical parti¢feS Also we
samples with different concentrations were prepared. Thaote that in this case the region where the sedimentation
sedimentation velocity was measured on a Beckman XL-Avelocity varies linearly with rod concentration is limited to
analytical ultracentrifuge equipped with UV absorbance opvery low volume fraction of rods.
tics. Most of the experiments were done at 25°C and at a It is a well-known fact that elongated rods at high vol-
centrifugal force equal to 45 500(85 000 rpm. Before each  ume fractions undergo a first-order phase transition to a lig-
sedimentation experiment the sample and rotor were allowedid crystalline nematic phas@.The nematic phase is char-
to equilibrate at the desired temperature for a few hoursacterized by a short-range liquidlike positional order and
Sedimentation data showed some unexpected features, intéong-range solidlike orientational order of rodfl virus
fering with straightforward calculation of the sedimentationforms a cholesteric phase instead of the nematic phse.
coefficient. For this reason we have added Appendix ClLocally the cholesteric phase is equivalent to nematic, how-
where a detailed analysis of our data is given. ever on a macroscopic scale the average direction of mol-

The measured sedimentation velocity for a range of volecules in a cholesteric phase forms a helix. The free energy
ume fractions offd from dilute solution up to a stable difference between a cholesteric phase and a nematic phase
nematic phase are shown in Fig. 2. All the samples in thesis very small and although our experiments are performed on
measurements were kept at 8 mM ionic strength. The sedithe cholesteric phase only, we expect that our results are
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60 T T T T 50 occurs because some patrticles will inevitably diffuse against
centrifugal field the centrifugal field from a highly concentrated plateau into

— 50¢ the dilute region. As this happens they simultaneously un-
g 40 dergo a transition from the nematic to the isotropic phase.
£ Since the sedimentation velocity of rods in the isotropic

5 30 phase is much lower than in the nematic phase, the probabil-
8 ity of the rods diffusing from the isotropic phase back into
§ 0r. the nematic phase is virtually zero. It is this asymmetry that
§ 10 results in a continuous flux of particles from the nematic into
8.5 min the isotropic phase and contributes to the formation of the

. . second plateau in the isotropic phase that is moving at a

0 L 1
67 68 69 70 71 72 slower speed. The concentration of the rods in the isotropic

radial position [cm] plateau will be very close to the concentration of isotropic
FIG. 3. A concentration profile of sedimentirid virus in a nematidcho- rods cogmstmg with the ngmatlp phas_e due tc_) the self-
lesterio phase taken at two different times. Instead of a single movingSharpening effect because dilute isotropic rods will catch up
boundary and a single plateau we observe two moving boundaries and twwith more concentrated isotropic rods. However, the highest
plateaus. Increased absorbance at the bottom of the container is due to thgncentration the isotropic rods can attain is the coexistence
accumulation of the virus particles. Peak “b” marks the fast sedimenting . . . .
nematic boundary while peak “a” marks the slow sedimenting isotropic concentration betv_veen the ISOFI’OpIC and nematic phgses, a_s
boundary. The two curves are offset for clarity. The concentration of thelONg as the nematic phase sediments faster than the isotropic
initially uniform nematic sample was 13 mg/ml. The concentration of the phase. Indeed, this is very close to what we observe in Fig. 3.
coexisting isotropic and nematic phases at 8 mM ionic strength is 10.5 anth nother experimental observation corroborating our expla-
12 mg/ml, respectively. . . . . . .
nation is that the sedimentation velocity and concentration of
the slower isotropic plateau does not change significantly
ith average concentration of rods, as seen in Fig. 2.
Since the theory presented in this paper is valid only to
first order in concentration of rods, to obtain an accurate

tatively new behavior when placed in a centrifugal field. In- value of the pref_actoa n Eq. (49) we h_ave made additional
easurements in the dilute to semidilute range. Our results

stead of a single sedimenting boundary and single plateau A -
g g y gep are presented in Fig. 4. We note that the overlap to semidi-

observe two boundaries with two plateaus sedimenting a\ute concentration fofd with L=0.88um is at volume frac-

different velocities, as shown in Fig. 3. To confirm that this

change in sedimentation behavior is indeed due to the forhon of 5.9¢107°. Unlike the previous measurements, we

mation of the nematic phase we have made a sample th%’a\ve done these measurements at high ionic strength where
coexists between the isotropic and nematic phase. After th eh be;hav:co; O; chgrgi(édr.(t).ds 'ﬁ e)f[pr:a'cthe'd tp afproa;ﬁh the
sample had phase separated into macroscopically distinct cB—e aworho a:j_ rods. / ||0Ina_y a 'r? |on|c|_s rengd we
existing phases, each phase was sedimented separately. ect the sle |me?tat|9n vefoc:[jy to aveh_ahmearl eper]:-
the isotropic phase there was no sign of a second boundar ence on volume raction of rods up to higher values o
while in the nematiqcholesteri¢ phase we observed a fast olume fractlon: Th_e results for [onic sirength O.f 50 and 100
sedimenting second boundary that was slightly more concermoM a'\r/le .shc_)wn In F'gﬁ 4 T_hES\EngSe p:jefactlc())r(;n E'j@ at_
trated then the first component. On one hand, the slow com5- mM ionic strength isx=450=40 and at MW 1onic

ponent had a plateau concentration and a sedimentation Vgt_rengtha:440i 60. We have repeated the experiment at

locity that was almost independent of the averageloo mM ionic strength on a different analytical Beckman

concentration. On the other hand, the sedimentation veloci&(lzg Oljrltggc?/?/trlfuge lard1d t?]btal_nigoT gofollﬁwlrr]l 9 rtehsulif.
of the faster moving component rapidly decreases with in-_ it I_tt d . eF_conc uSe_ ad:h— I_ ’ 1\‘Nthlc IS ﬁ_g ret-
creasingfd concentration and at the same time the differenceU't P'OtEA IN FIg. 1b). Since the values of the coefficien

between the plateau concentrations of the two componengO not change much with changing ionic strength from 50 to
increases with increasing average concentration. 100 mM we conclude that the charged rods have approached

The unstable sedimentation of colloidal rods in the nem-.the hard rod limit. Note that because of its latg ratio fd

atic phase has a similar origin to the self-sharpening effect slightly erxibIel Withhz ﬁ’le]fSiStﬁnce Ien_gth Wr}:Chd Is 2.5
described in Appendix C. The reason for the instability is the!Mmes its contour length.Still for the experimentally deter-

discontinuous jump in sedimentation velocity that occurs aff'g%d parameters. Ofd’t \I/vhlchltare L=880fnm agld[t) th
the isotropic—nematic phase transition as is shown in Fig._ =~ nm our experimental results compare tavorably 1o the

2.8 The denser nematic phase sediments at a significantly¥: (49), which predicts the value at =488 (see Fig. 1 In

higher velocity then a more dilute isotropic phase. Initially a Qntrast, the previous result due to Peterson in(E@). pre-
stable nematic phase occupies the whole sample Iengtﬁl.'CtS a lower value obr=288.

When the centrifugal field is turned on a sharp sedimentin
boundary starts moving toward the bottom of the container.
Below this boundaryto the righ} the rods are still in the We acknowledge valuable discussions with R. B. Meyer.
nematic phase while above it the concentration of rods i his research was supported by National Science Foundation
very low and therefore they are in the isotropic state. ThisGrant Nos. DMR-9705336, INT-9113312, and by the Neth-

generic and would hold for a nematic phase of hard rods a¥
well.
Bacteriophagéd in the cholesteric phase exhibits quali-
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FIG. 4. (a) Concentration-dependent sedimentation velo&ityEq. (C5)]
for fd at 50 mM ionic strength. The data are fitted to a linear funcsbn
=45.3-20980p. The solid line is given by Eq(C6), which yieldsaS;.
The overlap volume fraction fofd with L=880nm is 5.%10°. (b)
Concentration-dependent sedimentation velocity fibrat 100 mM ionic
strength. The data are fitted to a linear funct®r- 45.9—204505.

erlands Foundations of Fundamental ResedfciM). Addi-

tional information is available online: www.elsie.brande-

is.edu.

APPENDIX A: HYDRODYNAMICS OF ROTATING
RODS

1. Flow field generated by a rotating rod

Dogic et al.

F?z—cﬂLerz—CDjﬂlXO, (A3)

whereC is an as yet unknown proportionality constant. This
expression is not valid for beads close to the center of the
rod: For these beads the forces may have a different direction
than their velocity. The fluid flow field generated by a long
and thin rod, however, is primarily determined by the rela-
tively large velocities of the beads further away from its
center. We may therefore use Eé3), except for relatively
few beads close to the center and near the tips of the rod.
Sincer;=jDQ, the torque is thus found, to leading order in
D/L, to be equal to

n/2 1/L 3
h_ ) h:_ 271 2 A
T j:Zmlr,XFJ CD 12(0) ax(Q, X0)
= (:D21 L 39 Ad
=-CD35 ) s (A4)

since ), is perpendicular tal. It is used here thaI}‘zlj2
=k(k+1)(2k+1). First of all, the constar€ is calculated
self-consistently from Faxgés theorem in the form of Eq.
(10). Multiplying both sides of Eq(10) by r;X, using that
riXv;=j?D?Q, , and summation over beads, leads to

1L 3D29 B 1 o
12\ D L7 3mpD *
3
+m(5 oL/D)Q, , (A5)
where the functiorg is defined as
b n/2 n/2 - 1
= —— I . .
9(L/D) (N+1)3 | =Shi2i=—#i+i ) li—jl
1 1 A6
BEEI RN e

For long and thin rods the summations may be replaced by
integrals, leading to

g(L/D)=zIn{L/D}, (A7)
up to leading order imD/L. Substitution of Eq(A4) for the

Consider a rod with its center at the origin, which rotate:;torque yields a single equation f@, yielding, again up to

with an angular velocity2. The angular velocity is decom-

leading order,

posed in its component perpendicular and parallel to the rods

center line,
Q, =[I-00]-Q, (A1)
Q” = C":I'Q, (AZ)

Due to the linearity of the governing hydrodynamic equa-

tions, the flow fields generated by a rod rotating aldg

47 1n,D
~ In{L/D}" (A8)
Hence, from Eq(A4),
3In{L/D} _,
Q, =~ Tol_al - (A9)

andQ; may be calculated separately and added to obtain th&he flow fieldu, that is generated by a rotating rod may now

flow field of the rod rotating alon@2.

be obtained from Eq4) to within the same approximations

Let us first consider a rod rotating with an angular ve-that were discussed in Sec. Il A as

locity 2, . The flow field that is generated by this rotating
rod is given by the general equati@®). The relative change

of the velocity of the beads is 1/j. For beads further away
from the origin one may therefore consider the velocity over
larger groups of beads as being virtually constant. The force

on bead is then proportional to its own velocity,

n/2
u(n=-— > T(r—r)-F
j=-n/2

417 7oD? ne

~ In{L/D} j:zn (A10)

T(r—rj)-(2, Xja).
2
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Replacing the sum over beads by a line integral, we thus fin@. Calculation of M R

4y (L2 In order to calculate the velocity that rod 2 acquires in
u, ()= In{L/D] dl T(r—r,—10)-(Q, XI10), the flow field (A16) generated by a rotating rod 1, we apply,
L2 (AL1) without further discussion, the same “mean-field” approach

as in the previous section. The velocity is approximated
wherer , is the position coordinate of the rod. by taking the fluid flow field generated by the rotating rod as

Next consider a rod rotating with an angular velocity a constant, equal to the average of the actual field over the
Q, . For this case we have to resort to Fasetheorem for  center line of the rod. Hence,

rotational motion of a bead, which reads
_ In{L/D} o,
1 Vo=U— 7 3 [1+0,05]-F5, (A17)
+§Vj><uo(rj), (A12) ™10

h
Q” = WTJ-
_ _ _ where the average flow field in terms of the torque on rod 1
where, as in the translational Faxe theorem(7), uy is the follows from Egs. (A1), (A2), (A9) and (Al4), with Q
fluid flow velocity that would have existed in the absence of _ Q,, the angular velocity of rod 1 an‘ifl‘ the torque on rod
beadj. The first term on the right-hand side is just Stokesq

rotational friction of a single bead in an unbounded fluid,
while the second term accounts for hydrodynamic interaction 12 (L2 L2 A A A "
between the beads. The important thing to note here is that U= FJ /2d|1f_L/2d|2T(rzl+|2U2—|1U1)‘(|1U1XT1)

the fluid flow generated by a single rotating bead is now ot

equal to N 1 fL/Z " fuz "
D/2 \3 8mwnol? ) L2 M) 2
Ul(l’)z(m> QHX(T_I’J'), (AlS) 1 i
ol . . . X| 0=l |3(r21+I202)X(0101-T1)_
so that this fluid flow is 0 along the entire center line of the a1 Il 1qly
rod. This implies that hydrodynamic interaction between the (A18)

beads is unimportant for this case. For a long and thin rod
rotating along its center line, each bead experiences a rot&Y definition the following “mean-field” expression for the
tional friction that is practically equal to the Stokes friction, translational—rotational mobility matrices are thus obtained
as if each bead were alone in an unbounded fluid. As a resul@fter an interchange of the indices 1 ang'2

the total torque on the rod is simply the sum of the Stokesian

TR_
torques on the beads, so that it follows immediately from M1 =0, (A19)
Faxen's theorem(A12) that
R 12 (L2 L2 R R R
N MlZZF 7L/2d|l 7L/2d|2|2U2XT(r12+|1U1_|2U2)
Q== ——=-T. (A14)
mnoD L
1 L2 L2
Furthermore, the total fluid flow, is simply the sum of the + 8ol 2 fﬁledllJluzdIZ
fluid flows (A13) generated by the rotating beads as if they
were alone in an unbounded fluid, since hydrodynamic inter- 1 ~ o
action between the beads is unimportant in the present case. ><|r12+I101_|202|3[u2><(r12+llu1)]u2.
Replacing the sum by a line integral thus yields
p g y g Yy (A20)
D2 (L2 1 — TR _ .
uy(r)= ?f dl W(Q”X(r—rp)). (A15) A nonzero contribution td/,;" stems entirely from reflection
—-L2 —Ip—

contributions, since a pure rotation of a single rod in an
The fluid flow u=u, +u, generated by a rotating rod unbounded fluid does not induce a translat.ional velpcity of
with an arbitrary angular velocitR2=, + €, follows by the same rlod. As.mentlc.med beforg, reflection _contnpunons
combining Eqs(A1) and (A2) and (A10) and (A15), are small in the |sotrop|c state, since the typical distance
between the beads of different rods is of the order
4y, (L2

u(r)= m —|_/2d| T(r—IO)-(QXIG)

D2 (L2 1 APPENDIX B: SEDIMENTATION VELOCITY FOR RODS

+ 5 JfLIZd |r—rp——lﬂ|3((00.9)x(r_rp))' INTERACTING WITH HARD CORE REPULSION

(AL6) As a first step in the evaluation of the integrals in Eq.
(43) for f,, the Fourier transform of the Oseen tensor

This approximate expression will be used in the following (T (k)= (1/7ok?)[1—kk], with k=k/k) is substituted, and

paragraph to obtain an expression for the mobility matriceshe integrations with respect tg andl, are performed, with

MIF, j=1.2. the following result:
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1 _ N R 020
fl:_WJ’dkk zédul¢du2f dr12 - X
oA N £ o1s|
X[9(r2,01,05) = x1(re|r2,0,)] £ a
< -l “lb
N N T g 0.10 °lg
Xexplikero}g ELk-u1 io ELk-uz , (B1) £ e centrifugal field
S 0.05
where 3
) sin{x} 0.00| ) ) , ) )
Jo(x)= o (B2 60 6.2 64 66 68 7.0

radial position [cm]
Consider the integral with respect itg,,
FIG. 5. Data obtained from an analytical centrifuge. A time series ofdhe
A R . concentration as a function of radial position in the centrifuge taken at 6.5
|Ef dridg(rip,01,0,) — x¢(rq|ro,0;) Jexpliker o} min intervals with “a” the first scan and “f” the last. The steep step in
(B3) concentration represents the sedimentation front, which moves away from
the centrifuge rotation axis with time. In this particular case the centrifuge
Replace the expression in the square brackets 93710 was spun at 25000 rpm and the centrifu¢gddimenting field points from

_ P . - left to right. The sharp peak “x” at the radial position of 5.95 cm is due to
+(1 Xf)' The integral over xils easily found to be refraction by the air—water meniscus. Radial dilution accounts for the di-

equal to minishing plateau concentration with increasing time.

f dryf 1— x¢(rq|r,0,) Jexpliker 5} finally yields Eq.(46) for f;.
Next consider the evaluation of the integrals in &)

7o, (1 for f,. That the integrals are convergent follows from the
=7 DLio| 5 Lk-0z ], (B4)  Taylor expansion,
while the integral oveg—1 is equal to L - i+a-Vi+ Eaa_-vvijL... _ (B8)
r—a ra ro 2 12
f drid9(ri2,05,0;) — 1]explikero} Using this in Eq.(44) and integration with respect to,

shows that the integrand varies Iikerl_z4 for large rq,,
sinceVzrl’zlzo for r,# 0. Following the same procedure as
mentioned previously one finds

1 1
=—2DL2|01><02|j0(ELk-Gl)jO(ELk-ﬂz). (B5)

These results are valid f&kD<1 (saykD<0.2), while, in 1 1 1
addition, Eq.(B5) is valid for orientations wher®/L <|0, fo=5 =g | dK _ldzl _le2

X 0,|. As it will turn out, thekD dependence is of no impor-
tance for long and thin rods, since convergence of the wave

3 T o [
(2m)%6(k)— 7 D2L| 5 Lkz,

vector integral is assured by thd-dependent functions, X

which tend to zero for wave vectors for which, inde&@

<1. Moreover, the angular integration range, pertaining to (1 jo(zLkz)—1

orientations where[§/L)/|0,X 0,| is not small, vanishes for %o ELkZZ K (B9)

long and thin rods. Substitution of the resulB#) and (B5)
into Eq. (B1) for f1, and noting that after integration over
orientations the dependence on the direcfoof the wave
vector is lost, so that its direction may be chosen alongzthe
direction, yields(with x= 3kL)

where § is the delta distribution. The second term in the
square brackets is easily seen to®€/L), using the same
integration tricks as used previously for the evaluatiofi,of
For the evaluation of the delta distribution contribution, the
integrand can be expanded in a power series expansikn in

2 (= A o Using thatjo(x)=1—x%/6+--, results in Eq(47) for f,.
f1=?f0 dx 3§ do, § ddi, j3(x,2,)

APPENDIX C: MEASUREMENT OF SEDIMENTATION
VELOCITY OF fd VIRUS WITH ANALYTICAL
, (B6) ULTRACENTRIFUGE

An analytical centrifuge measures the concentration of
with z;, j=1,2, is thez component of}; . The second term sedimenting colloid along the centrifugal field. From a single
between the square brackets is @WD/L) contribution as run in an analytical ultracentrifuge we obtain a time se-
compared to the first term and may be neglected. Transformguence of plots usually taken every few minutes. A represen-
ing the orientational integrals to spherical coordinates, fotative sequence of these plots is shown in Fig. 5. Each plot in
which z;=coq0;}, and usingwith ¥=¢;— ¢,), the series indicates tHe concentration as a function of ra-

A Ose =T dial position in the cell at that particular time. The concen-

[0 X0z| =[1=(coq O1}cod O} trations of the dilute virus solutions were determined with

+sin{®,}sin{®,}cog ¥})?]2, (B7)  the extinction coefficients of 3.84 mgcn? at 270 nnt. For

X

. 7D
|0 X0y 5(x21) — ) EJO(XZ:L)
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FIG. 7. Position of the sedimentation boundary plotted agairfst The
circles represent measurements which were taken approximately every 2.5
min. The lines represent the second-order polynomial fit to the [dzda

FIG. 6. A series of plots ofd concentration as a function of radial position
at time intervals of approximately 12.7 min with “a” the first scan and “d”

the last. The difference between this series and those in Fig. 5 is that her(eC he ol ith a | | d h di idd of
the concentration df is higher and the rotation speed was 20 000 rpm. The 2]. The plot with a larger slope corresponds to the sedimentatidd o
virus in 100 mM ionic strength at a volume fraction of 7750 ° at 25 000

eak seen at the sedimenting boundary is an artifact of the detection system ; . .
gnd is due to the refraction o% light at aysharp step in the refractive indgx afP™m-: The other plot is for a higher volume fraction &f equal to 2.63
the sedimenting boundary. Radial dilution lowers the plateau concentratioR’
with time. A similar peak occurs at the air/water meniscus “x,” which is
stationary.

spreading of the initially very sharp boundary. This diffusion

samples with higher concentration the solution is opticallyof particles is countered by the self-sharpening effect, which
opaque at 270 nm and therefore we measure absorbanceigitdue to the concentration dependence of the sedimentation
progressively higher wavelengths, which correspond to &elocity. On one hand, any molecule lagging behind the
lower extinction coefficient ofd. The sedimenting particles boundary is in a more dilute environment and will therefore
in Fig. 5 move from left to right. The water—air interface is sediment at an enhanced velocity. On the other hand, the
indicated by a sharp peak located at radial position of 5.9particles in the plateau region are in a more concentrated
cm that is due to refraction by the meniscus. Note that thig€nvironment and their sedimentation will be retarded. As a
peak does not move as a function of time, indicating that th&onsequence the boundaries will self-sharpen. In a suspen-
container does not leak. As the rods start sedimenting towarsion of elongated particles the self-sharpening effect will be
the cell bottom, the region at the top of the solutiomthe =~ much stronger then in a suspension of globular particles be-
right of the air—water interface and to the left of the sedi-cause the volume prefactarin Eq. (49) is much larger for
mentation front in Fig. bis depleted of virus as indicated by €longated particles then for globular particles. The pro-
the absence of absorption. Also the value of the concentrgtounced self-sharpening effect leads to hypersharp bound-
tion of rods in the plateau region, always to the right of thearies, resulting in a steep gradient of refractive index which
depleted region, is decreasing as the bulk of the sampl# turn causes the artifacts shown in Fig. 6. In globular col-
moves toward the bottom of the container. The reason foloids these effects are usually not observed.
this is that the walls of the cell are not parallel to each other, In sedimentation analysis it is assumed that the rate of
but instead follow the lines of centrifugal field in order to movement of the sedimentation boundary is approximately
minimize convective disturbances, an effect referred to agquivalent to the sedimentation velocity of the particles in
“radial dilution.” 2° Between the flat plateau region and the the plateaubulk) region. To compare results from different
depleted region there is a sharp boundary. runs it is common to express the sedimentation velocity in

At higher concentrations did we observed the appear- units independent of centrifugal force as follows:
ance of a sharp peak at the sedimenting boundary as is 1 dr 1 dinr
shown in Fig. 6. The peak height increases with increasing S=-— —=-———
concentration while the magnitude of the peak is indepen- w7 dt w” dt
dent of the wavelength and thus this peak cannot be due tdhe sedimentation velocity unit is called a Svedbégy,
absorption of thefd, which is wavelength dependent. The with 1S=[10 s !]. We definer as the radial position at
probable cause of the peak is the refraction of incident lighthe sedimentation boundary where the virus concentration is
due to the steep gradient in the virus concentration and hen@gjual to half the concentration of the plateau region. This
the refractive index at the sedimenting boundary. As the inquantity is easily obtained from experimental data for
cident light is refracted away from the detector, less light issamples at low concentration. For samples at higher concen-
collected by it and this results in apparent increased absortration, where we observe a peak at the sedimenting bound-
tion of the sample. The peak at the water/air meniscus haary due to refraction of light, we defimeas the radial posi-
the same origin. tion of the highest point of the peak. A typical plot of the

Two factors that determine the shape of the sedimentingpgarithm ofr againstw?t used in the determination of the
boundary are the diffusion constant and the self-sharpeningedimentation constant is shown in Fig. 7. Surprisingly, we
effect?® The diffusion of the particles leads to gradual found that a linear function provided an inadequate fit to our

(CD
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TABLE I. The values of constants obtained from EG3) being fitted to  js independent of radial positidior equivalentlywzt) where
da_ta from F_|g. 4a). The second column indicates the valug of the s_edlmen-We evaluate Eq(.C3) as shown in Table I. The measurement
tation velocityS' evaluated at the start of the sedimentation experiment at_ . . .. .
w?t=0 or equivalentlyr =6.1 cm. The third column indicates the value of artlf_aCt °”'Y 'erdu?es a. position-dependent offset in the
paramete€ in Eq. (C3), which is independent of concentration. If we evalu- S€dimentation velocity which affects the measured value of
ate Eq.(C3) for the sedimentation velocity at the end of the sedimentationS,. From a few measurements where we did not observe
experimentr =6.8 cm, we obtain the values of the sedimentation velocity measurement artifacts:(= O) we obtained the value Cﬁo

shown in the fourth column. Note that the value of the slaf$g [Eq. (C5)] _ . s . . )
does not depend on the radial position. The valuex8f from the data 47. Since this is in gOOd agreement with previous measure

evaluated at=6.1cm is 20500 and at="6.8 cm is 21000, We use the MENLS we use this value throughout our analsis.
value S,=47 to obtaina. It is important to note that the dependenceSbfon po-

sitionr shown in Fig. 7 is not due to the decreasing concen-

Volume fraction 11057 c S80S tration of rods in plateau, which in turn is due to radial dilu-
4.31x10°° 44.1 1.35¢10° % 49.5 tion. To show this we have made two measurements. In a
4.31x10°° 44.5 12%10°% 49.6 first measurement we evaluated the sedimentation velocity at
7.21x10°° 44.1 121107 48.9 the point where the sedimenting boundary is close to the
i:é41><>< 18,4 ﬁ:g i:ii 18,23 jg:g’ bottom of the container. At this time, due to radial dilution,
218x10°4 40.4 19K 10° 2 455 the plateau concentration is about 70% of the initial concen-
2.94x10 4 39.4 1.35¢10 % 44.8 tration. In the second run our initial concentration was 70%

of the concentration of rods in the first run. In this run we
evaluated the sedimentation velocity right at the beginning of
the run. We find that sedimentation velocities obtained in

data. When the sedimentation data are collected between r{l€S€ two ways are vastly different, which indicates that the

dial positions of 6.1 and 6.8 cm a polynomial of second Ordersystematic errors described are not due to radial dilution.
fits the data much better:

_ 2 4.2
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(1981).
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sition of the measurementof equivalent timew?2t at which the ensemble average of the deviatoric part of the stress tensor vanishes.
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that the sedimentation veIocity is a function of time or of tions in Complex Fluidsedited by M. Baus, L. F. Rull, and J. P. Ryckaert
. . . . (Kluwer, Dordrecht, 1996

r§d|al position in the cell. In Table I'we see that .the coeffi- 95 A Berkowitz and L. A. Day, J. Mol. Biol102, 531 (1976.
cient C, obtained when the quadratic polynomial in EZR) 101, song, U. Kim, J. Wilcoxon, and J. M. Schurr, Biopolymess, 547
is fitted to data in Fig. @), is independent of concentration.  (199.

e sndimat ; : . i~ K. Zimmermann, H. Hagedorn, C. C. Heuck, M. Hinrichsen, and H. Lud-
This is another indication that this artifact is due to the in Wig, J. Biol. Chem 261, 1653 (1986

strument. 123, Sambrook, E. F. Fritsch, and T. Maniafigoplecular Cloning: A Labo-
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