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Chiral edge fluctuations of colloidal membranes
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We study edge fluctuations of a flat colloidal membrane comprised of a monolayer of aligned filamentous
viruses. Experiments reveal that a peak in the spectrum of the in-plane edge fluctuations arises for sufficiently
strong virus chirality. Accounting for internal liquid crystalline degrees of freedom by the length, curvature,
and geodesic torsion of the edge, we calculate the spectrum of the edge fluctuations. The theory quantitatively
describes the experimental data, demonstrating that chirality couples in-plane and out-of-plane edge fluctuations
to produce the peak.
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Surfaces that resist bending are ubiquitous in biophysics
and soft matter physics. The physics of enclosed cellular
membranes [1,2], organelles such as the endoplasmic reticu-
lum [3,4], synthetic vesicles [5], polymersomes [6], surfactant
interfaces [7], and microemulsions [8] is described by a simple
model that accounts for the energy cost of bending with an
effective bending modulus κ [1,9]. Furthermore, experiments
have provided quantitative insight into how the bending mod-
ulus of such two-dimensional (2D) assemblages depends on
the properties of the constituent molecules [10,11]. However,
for many processes, such as vesicle fusion in exocytosis,
trafficking of proteins, and the resealing of plasma membranes,
the free energy associated with an exposed edge plays an
equally important role [12]. In conventional membranes edges
are associated with transient states that quickly disappear as the
assemblage seals itself, making it difficult to experimentally
study the properties of the edges.

Colloidal membranes are unique 2D assemblages compris-
ing a single liquid-like layer monolayer of aligned rodlike
viruses that are held together by osmotic pressure [13–16].
Although they are a few hundred times thicker, colloidal mono-
layer membranes share many properties with lipid bilayers,
such as in-plane fluidity and resistance to bending. However,
they also display distinctive properties, such as a propensity
to have exposed edges, as well as shapes with negative
Gaussian curvature [17]. In this Rapid Communication, we
use experiments and theory to study the edge fluctuations of
large, mostly flat colloidal membranes. We use an effective
theory that treats the internal liquid-crystalline degrees of
freedom using geometric properties of the membrane edge.
In-plane fluctuations are mainly determined by the edge
tension and associated bending rigidity. Out-of-plane height
fluctuations distort the membrane surface leading to saddle-
splay deformations and are thus influenced by the Gaussian
curvature modulus. We show that the intrinsic chirality of
the membrane couples in-plane and out-of-plane fluctuations
yielding a fluctuation spectrum with an anomalous peak, and
that this peak reflects the instability of a flat disk to a shape
with edges of a helical nature. Accurate three-dimensional
(3D) imaging of edge fluctuations requires 3D scanning, and
therefore a higher temporal resolution than 2D imaging. The

advantage of our approach is that our 2D measurements reveal
the coupling between in-plane and out-of plane fluctuations
arising from chirality and the Gaussian curvature modulus.

Colloidal membranes were assembled by mixing a di-
lute isotropic suspension of monodisperse rod-like fd-wt
viruses with a nonadsorbing polymer, Dextran (M.W. 500,000,
37 mg/ml) [13]. The fd-wt filaments are 0.88 μm long and
have a diameter of ≈6 nm. The rods are parallel to the
surface normal and to each other in the membrane interior, but
they twist at the edge [Fig. 1(a)] to minimize the interfacial
area between the rods and the enveloping polymer depletant
[14,18]. Increasing the rod chirality raises the free energy of
the interior untwisted rods and lowers the free energy of the
twisted rods near the edge [15]. Chirality of fd-wt increases
with decreasing temperature [19], enabling in situ control
of the edge tension. With decreasing temperature the edge
tension becomes sufficiently low that a 2D membrane becomes
unstable and undergoes a transition into one-dimensional
twisted ribbons [15].

Following previously published methods [20], we measured
the in-plane fluctuation spectrum of an exposed colloidal
membrane edge. The edge fluctuations were quantified over a
range of temperatures (Fig. 2 and Supplemental Material [21]).
For all conditions, the curves tend to a constant value at small
wave number q and fall off as 1/q2 at large wave number,
as in the previous measurements. However, for strongly
chiral systems at lower temperatures, a peak develops around
q = 1 μm−1. We note that the measured fluctuation spectrum
depends on the purity of the virus preparation as well as the
depleting polymer Dextran. Certain virus preparations do not
exhibit the membrane-to-ribbon transition. These samples also
do not have a fluctuation spectrum with a well-defined peak.
The exact nature of the contaminants in these samples has not
been determined. Previous work has demonstrated that even a
single actin filament exhibits a strong tendency to dissolve at
the edge and can suppress the membrane-to-ribbon transition
[20]. In the remainder of this work we restrict our analysis to
only those sample preparations that exhibited a well-defined
ribbon-to-membrane transition and thus the anomalous peak.

The in-plane edge fluctuations in the high-temperature achi-
ral limit are described by a simple model, which approximates
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FIG. 1. (a) Schematic of a colloidal membrane (b) Semi-infinite
surface with a helix-like boundary. (c) Same shape viewed from
above, looking down the z axis at the x-y plane.

a flat, circular membrane as a semi-infinite membrane with
an infinite straight edge [15]. For in-plane fluctuations, the
effective energy of the edge is given by

E1 =
∫

ds

[
γ + B

2
k2

]
, (1)

FIG. 2. (a) Normalized power spectrum s2
q ≡ q2〈uqu−q〉 in which

c∗ (in units of kBT ) and γ (in units of kBT /μm) are fit to the data,
with κ/κ̄ → ∞, B = 100 kBT μm, and κ̄ = 50 kBT . The value of B

used was found by fitting the T = 60 ◦C data to the achiral formula
(2). (b) Values of c∗ obtained from fitting (left vertical axis), and
values of γ obtained from fitting (right vertical axis).

FIG. 3. Phase diagram for flat and rippled edges of chiral
membranes as a function of Gaussian curvature modulus κ̄ and chiral
modulus c∗ for various values of line tension γ , B = 100 kBT μm,
and κ = 150 kBT . The flat edge is stable in the shaded area.

where s is the edge arc length, γ is the line tension, B is the
bending stiffness, and k is the curvature. For a flat membrane
lying in the x-y plane, we describe the path of the edge by
(u(y),y,0), where u(y) measures the local deviation of the
edge from being perfectly straight. Expanding the energy (1)
to second order in u and applying the equipartition theorem
yields

〈uqu−q〉 = kBT

Bq4 + γ q2
, (2)

where uq is the Fourier amplitude defined by u(y) =
(1/

√
L)

∑
q uq exp iqy, with the sum running over negative

and positive values of q, and we have enforced periodic bound-
ary conditions with period L. Fitting the high-temperature
spectrum of achiral rods to Eq. (2) yields γ and B [15].

As mentioned above, the line tension γ depends on
chirality. The typical order of magnitude for the line tension
is γ ≈ 100 kBT μm [15], but we can estimate its dependence
on chirality by examining the energy density of the twisted
rods near the edge of a semi-infinite membrane [14]. The
total energy per unit length of a flat membrane in the limit
of weak chirality is γ = γ0 − K2λDq2

0/2, where γ0 is the
line tension of an achiral membrane, K2 (measured to be
≈ 100kBT/μm [19]) is the twist Frank constant, λ is the
twist penetration depth, D is the membrane thickness, and
q0 is the preferred twist. The bend modulus B may also
be estimated by considering the liquid crystal degrees of
freedom at the edge. The edge of a colloidal membrane
assumes a surface-tension-minimizing semicircular profile.
Consequently, at the edge, the rodlike viruses lie in the plane
of the membrane, tending to be parallel to the edge [Fig. 1(a)].
If the edge is curved, these rods will not be aligned and will
thus give rise to a liquid-crystal bend energy penalty. Using the
twist penetration depth λ and the Frank elastic constant K3 for
bend, dimensional analysis implies B ≈ DK3λ, where D ≈
1 μm is the membrane thickness. Assuming the one-coupling
constant approximation K3 ≈ K2, and taking and λ ≈ 1 μm,
yields B ≈ 100 kBT μm, which agrees with measurements
of the in-plane fluctuations of the edge of a large flat
membrane [15].
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Next we show that chirality also couples the in-plane and
out-of-plane fluctuations of the edge and ultimately leads to a
different q dependence in the power spectrum if the chirality
is sufficiently strong. Using the full liquid crystal theory for
colloidal membranes [22] to calculate the power spectrum of
the fluctuating edge of a curved surface is a daunting task. We
note that the twist of the virus particles is limited to a region
near the edge, which is much thinner than the membrane
size. Therefore, we use an effective theory in which the
energetic cost of the nonuniform liquid crystalline distortions
are described by the membrane’s geometric properties alone.
A closely related effective theory has been successfully used
to calculate the scalloped shapes of colloidal membranes
composed of a mixture of viruses of opposite handedness
[17,23]. The edge energy E1 (1) is invariant under mirror
reflections and is therefore achiral. To account for the chirality
of the membrane, in addition to the tension and bending
terms, we include the following terms in the edge energy
[23–25]:

E∗ = B ′

2

∫
ds(τg − τ ∗

g )2, (3)

where B ′ is a bending modulus, τg is the geodesic torsion,
and τ ∗

g is the preferred value of the geodesic torsion. The
geodesic torsion τg is the rate that the surface normal n̂C at the
edge C twists about the tangent vector: τg = T̂ · n̂C × dn̂C/ds

[26]. Note that unlike the ordinary torsion of a curve [26],
the geodesic torsion is well defined even for a straight line.
Furthermore, the term E∗ is invariant under replacing the
surface normal by its reverse, n̂ �→ −n̂, as expected for a
symmetric membrane. Also, the cross term in E∗ breaks
mirror symmetry because the sign of the geodesic torsion
changes when the handedness of the edge changes. It is
convenient to use dimensional analysis to assume B ≈ B ′
and introduce the modulus c∗ = −Bτ ∗

g . Since the preference
for a definite handedness of the edge ultimately arises from
the intrinsic twist of the virus particles, the modulus c∗
must be proportional to q0, the preferred rate of twist of the
viruses. We estimate c∗ ≈ DK2q0λ, where K2 is the twist
elastic constant. For q0 ≈ 1 μm−1, and invoking the commonly
used one-Frank constant approximation K2 ≈ K3, we estimate
c∗ ≈ 100 kBT .

The absence of mirror symmetry leads to a preference for
helical edge fluctuations that couple in-plane and out-of-plane
fluctuations. Since the distortions of the membrane with a
helical edge penetrate into the interior, we must also consider
the membrane bending energy. For a thin membrane, the
bending energy is given by the Canham-Helfrich energy
[1,9],

E2 = κ

2

∫
dA(2H )2 + κ̄

∫
dAK, (4)

where H = (1/R1 + 1/R2)/2 is the mean curvature, R1 and
R2 are the principal radii of curvature, K = 1/(R1R2) is
the Gaussian curvature, κ is the bending modulus, and κ̄

is the Gaussian curvature modulus. Although the thickness
of the membrane, D ≈ 1 μm, is comparable to the length

scale q−1 ≈ 1 μm of ripples observed at the edge of a
membrane disk undergoing the transition to a twisted ribbon,
we will proceed with the assumption that the membrane
is thin. Note that since the membrane has an edge, the
Gauss-Bonnet theorem implies that the contribution from the
bending energy from the Gaussian curvature term depends on
membrane shape, in contrast with the case of a closed vesicle
[26,27].

Early work demonstrated that the height fluctuations of col-
loidal membranes scales as 1/q3 [13], leading to an estimate of
κ ≈ 150 kBT . Recent measurements and theoretical estimates
of the Gaussian curvature modulus show that κ̄ ≈ 200 kBT

in colloidal membranes [17]. The positive value of κ̄ is in
striking contrast to the case of lipid bilayer membranes, where
κ̄ is typically negative due to the compressive stress in the head
groups [28–30]. However, κ̄ can be positive in smectic liquid
crystals [31] and block copolymers [32].

To study the stability of a flat membrane and the out-of-
plane fluctuations of its edge, we calculate the energy of
a semi-infinite membrane with a rippled edge, working to
second order in the deformation. The membrane is initially
flat with midsurface at the z = 0 plane and occupying x < 0.
The y axis is the initially straight edge. We perturb the surface
by deforming the edge so that the position of points on
the membrane above the coordinates in the plane (x,y) are
given by R(x,y) = (x,y,ζ (x,y)), and with the edge given by
RC(y) = (u(y),y,v(y)), which implies the boundary condition
ζ (u(y),y) = v(y). If u(y) and v(y) are sinusoidal and out of
phase, the edge will have a helical nature as illustrated in
Figs. 1(b) and 1(c). Care must be taken in calculating the edge
quantities since we must expand both the quantities themselves
and their arguments. For example, to find the geodesic torsion
at the edge we expand the argument of the normal at the edge,
nC(u(y),y) ≈ n(0,y) + u∂nC/∂x|x=0.

Expanding the energy to second order, we find the total
energy E = E1 + E2 + E∗,

E =
∫

dx dy

{
κ

2
(∇2ζ )2 + κ̄

[
∂2ζ

∂x2

∂2ζ

∂y2
−

(
∂2ζ

∂x∂y

)2
]}

+
∫

dy

[
γ

2
(u′2 + v′2) + B

2
(u′′2 + v′′2)

]

+
∫

dy

[
B

2

(
∂2ζ

∂x∂y

)2

x=0

+ c∗u′v′′
]
, (5)

where the prime denotes the derivative with respect to y,
e.g., u′ = du/dy. To first order the Euler-Lagrange equation
for the energy (5) is (∇2)2ζ = 0. Since the horizontal and
vertical positions of the edge are prescribed, we do not enforce
the force boundary conditions at the edge. The condition of
zero bending moment at the boundary to first order [33] is
κ∇2ζ + κ̄∂2ζ/∂y2 = 0 at x = 0. The solution to the Euler-
Lagrange equations that satisfies this boundary condition and
ζ (u(y),y) = v(y) is

ζ (x,y) = 1√
L

∑
q

vq

(
1 + κ̄

2κ
|q|x

)
exp (|q|x + iqy). (6)

Note that when κ � κ̄ , the surface becomes a minimal surface.
To keep the area fixed, the whole surface must shift in the
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negative x direction; however, this shift is second order in the
vq and does not affect the energy to leading order.

Inserting the Fourier expansions of ζ (x,y), u(y), and v(y)
into the total energy yields

E =
∑

q

{[
−κ̄|q|3 4κ + κ̄

4κ
+ γ

2
q2 + B

2

(
2κ + κ̄

2κ

)2

q4

]

× |vq |2 +
(

γ

2
q2 + B

2
q4

)
|uq |2

− i

2
c∗q3(uqv−q − u−qvq)

}
. (7)

Using the expression for the energy (7) we can study the
stability of a flat semi-infinite membrane. We first consider
the achiral case, c∗ = 0, which applies at high temperatures
(T � 60 ◦C). The horizontal and vertical fluctuations of
the edge are decoupled, and ripples uq in the plane of
the membrane always increase the energy. However, when
the Gaussian curvature modulus is larger than κ̄c, where κ̄c

solves κ̄c(4κ + κ̄c) = √
γB(4κ + 2κ̄c), then it is energetically

favorable for ripples vq in the vertical (positive z) direction
to form [21]. Using the typical values for B and κ quoted
above, and the value γ ≈ 300 kBT we find from fitting the
fluctuation spectrum at high temperature [see below and
Fig. 2(b)], we estimate κ̄c ≈ 50 kBT . The wave number of
the ripple that forms just at the critical condition κ̄ = κ̄c is
qc = √

γ /B/(1 + κ̄c/2κ) ≈ 1 μm−1.
In the chiral case, we study the stability of the flat membrane

with an edge by writing E = ∑
q(uq,vq)Mq(u−q,v−q)T/2

and diagonalizing Mq to find its eigenvalues
σ± = γ q2 + Bq4[1 + (1 + κ̄/2κ)2]/2 − |q|3[κ̄(1 + κ̄/4κ) ∓√

c∗2 + κ̄2(1 + κ̄/4κ)2(B|q|/2κ − 1)2]. In this case, either
chirality or the Gaussian curvature modulus can drive an
instability. The condition for a rippled edge is σ− � 0, and
the critical values for the Gaussian modulus κ̄c and marginally
unstable wave number qc are determined by the conditions
σ− = 0 and ∂σ−/∂q = 0. These equations lead to complicated
expressions for qc and the critical values of κ̄ and c∗, which
are plotted in Fig. 3. However, the expressions simplify in the
limit B � B ′, where the critical wave number is qc = √

γ /B,
and the critical values of κ̄ and c∗ satisfy

κ̄

(
4κ + κ̄

4κ

)
+

√
c∗2 + κ̄2

(
4κ + κ̄

4κ

)2

= 2
√

γB. (8)

Note that the factor of ic∗ in the off-diagonal components of
Mq leads to a phase difference between the x and z components
of the eigenvectors of Mq , and thus a preferred handedness to
the edge depending on the sign of c∗.

The energy (7) along with the equipartition theorem
yields the power spectrum for in-plane and out-of-plane edge
fluctuations, which is valid for stable flat states:

〈uqu−q〉 = kBT

Bq4 + γ q2 − c∗2q4/	(q)
(9)

〈vqv−q〉 = kBT

	(q) − c∗2q4/(Bq2 + γ )
, (10)

where 	(q) = Bq4{1 + [1 + κ̄/(2κ)]2} + γ q2 − 2κ̄|q|3[1 +
κ̄/(4κ)].

Note that c∗, κ , and κ̄ only affect the fluctuations for
intermediate q; the large and small q behavior is controlled
by the bending stiffness and line tension, respectively, just
as in the case of an achiral membrane. Note also that the
out-of-plane fluctuations of the edge of an achiral membrane
have a distinctly different q dependence than the in-plane
fluctuations of Eq. (2): 〈vqv−q〉 = kBT/	(q) when c∗ = 0.

As the temperature is lowered, the value of γ decreases
while chirality and thus c∗ increases. The system therefore
comes closer to fulfilling the condition (8) for ripples to form,
leading to a peak near qc. Figure 2 shows fits of the theoretical
expression (9) for s2

q ≡ q2〈uqu−q〉 assuming κ = 150 kBT ,
B = 100 kBT μm, and κ̄ = 50 kBT , along with the values of
γ and c∗ obtained from fitting each curve [21]. The value
of B used was found by fitting the T = 60 ◦C data to the
achiral formula (2). Because B does not change appreciably
with T , all curves collapse onto a single line in the large q

limit. Similarly, κ̄ is not expected to depend significantly on
T and was fixed for fitting. Because both κ̄ and c∗ control the
size of the peak, fixing κ̄ also allows the effect of c∗ to be
assessed more accurately. The magnitude of the κ̄ used in our
fits is smaller than but still comparable in magnitude with the
recent experimental measurements and theoretical estimates
that yield κ̄ ≈ 200 kBT [17].

The values of γ and c∗ from the fitting have the expected
order of magnitude and obey the expected trend of γ increasing
and c∗ decreasing to zero as the temperature increases [21].
Although the fits capture the shape of the peak well, there is
some discrepancy with the experimental data at the smallest
measured values of q. There are two main reasons for this
discrepancy. First, the characteristic widths of the peaks are
fairly large, and there are not enough data points taken at small
enough q to escape the influence of the peak. Second, when
q decreases, the fluctuation relaxation time increases rapidly.
The longer relaxation time leads to poor statistics, since it
reduces the number of configurations over which the data can
be averaged. Consequently, the fits tend to underestimate γ

when the temperature is low.
To conclude, we have measured the small-amplitude fluc-

tuations of the edge of a colloidal membrane, and we found
that as the chirality increases, a peak forms at a characteristic
wavelength. Our effective geometric theory captures the
important features of the measurement such as the formation
of the peak and shows how the Gaussian curvature modulus
affects the fluctuations when chirality couples the undulations
of the edge in and out of the plane of the membrane. We
have also calculated the power spectrum for out-of-plane
fluctuations of the edge, which would be especially interesting
to measure in the achiral case, as it offers another method of
estimating the Gaussian curvature modulus κ̄ .
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