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In the presence of a nonadsorbing polymer, monodisperse rod-like
particles assemble into colloidal membranes, which are one-rod-
length–thick liquid-like monolayers of aligned rods. Unlike 3D
edgeless bilayer vesicles, colloidal monolayer membranes form
open structures with an exposed edge, thus presenting an oppor-
tunity to study elasticity of fluid sheets. Membranes assembled
from single-component chiral rods form flat disks with uniform
edge twist. In comparison, membranes composed of a mixture of
rods with opposite chiralities can have the edge twist of either
handedness. In this limit, disk-shaped membranes become unstable,
instead forming structures with scalloped edges, where two adja-
cent lobes with opposite handedness are separated by a cusp-
shaped point defect. Such membranes adopt a 3D configuration,
with cusp defects alternatively located above and below the mem-
brane plane. In the achiral regime, the cusp defects have repulsive
interactions, but away from this limit we measure effective long-
ranged attractive binding. A phenomenological model shows that
the increase in the edge energy of scalloped membranes is compen-
sated by concomitant decrease in the deformation energy due to
Gaussian curvature associated with scalloped edges, demonstrating
that colloidal membranes have positive Gaussian modulus. A simple
excluded volume argument predicts the sign and magnitude of the
Gaussian curvature modulus that is in agreement with experimental
measurements. Our results provide insight into how the interplay
between membrane elasticity, geometrical frustration, and achiral
symmetry breaking can be used to fold colloidal membranes into
3D shapes.
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The possible configurations and shapes of 2D fluid membranes
can be described by a continuum energy expression that ac-

counts for the membrane’s out-of-plane deformations as well as
the line tension associated with the membrane’s exposed edge (1,
2). Because an arbitrary deformation of a thin layer can have ei-
ther mean and/or Gaussian curvature, the full theoretical de-
scription of membranes, in principle, requires two parameters, the
bending and Gaussian curvature moduli. However, lipid bilayers
almost always appear as edgeless 3D vesicles, which further sim-
plify theoretical modeling. In particular, integrating Gaussian
curvature over any simply closed surface yields a constant (3).
Thus, the shape fluctuations of a closed vesicle only depend on the
membrane-bending modulus. Consequently, experiments that in-
terrogated mechanics or shape fluctuations of vesicles provided
extensive information about the membrane curvature modulus
and how it depends on the structure of the constituent particles
(4–6). In comparison, significantly less is known about the
Gaussian modulus, despite the significant role it plays in funda-
mental biological and technological processes such as pore for-
mation as well as vesicle fusion and fission (7–11).
Recent experiments have demonstrated that, in the presence

of a depleting agent, monodisperse rods robustly assemble into
one-rod-length–thick 2D membranes, with in-plane liquid order

(12–16). Although more than two orders of magnitude thicker
than lipid membranes, the deformations of both colloidal mono-
layers and lipid bilayers are described by the same elastic energy
(17). However, in contrast to conventional membranes that fold
into 3D vesicles, colloidal membranes appear as open structures.
This presents a unique opportunity to explore the elasticity of 2D
fluid sheets, a geometry for which both the Gaussian modulus and
edge energy play an important role. Here, we explore the possible
shapes of colloidal membranes and demonstrate an unexpected
connection between the membrane’s edge structure, Gaussian
curvature, and the chirality of the constituent rods.
The semicircular edge profile requires twisting of the rods at

the edge, and this twist penetrates into the membrane interior
over a characteristic length scale (16, 18, 19). For membranes
composed of single-component chiral rods, the handedness of
the edge twist along the entire circumference is uniform and
dictated by the microscopic chirality of the constituent rods.
With decreasing chirality, which is accomplished by mixing rods
of opposite handedness, flat 2D circular membranes become
unstable, and instead develop complex scalloped edges. In this
limit, edge-bound rods exhibit achiral symmetry breaking,
forming domains of opposite twist that are separated by cusp-like
point defects, where the membrane escapes into the third di-
mension. The exact structure of the scalloped edge is determined
by the competition between the line tension and the Gaussian
curvature modulus. Line tension favors circular flat membrane
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that minimizes the exposed edge. In comparison, an undulating
scalloped edge creates excess Gaussian curvature and is thus
favored by membranes that have positive Gaussian moduli. Thus,
observations of scalloped edges demonstrate that Gaussian
modulus of colloidal membranes is positive. Tuning the mem-
brane’s chiral composition effectively controls the interactions
between cusp defects that can be either attractive or repulsive.
Measurements of these interactions leads to an estimate of the
Gaussian curvature modulus that is in agreement with the pre-
dictions of a simple theoretical model.

Structure of Colloidal Membranes
Our experimental model system is a colloidal membrane that
spontaneously assembles in a mixture of dilute monodisperse rod-
like viruses and nonadsorbing polymer dextran. The viruses
alone interact through repulsive screened electrostatic repulsions
(20). Addition of nonadsorbing polymer induces attractive de-
pletion interactions that lead to assembly of colloidal mem-
branes, equilibrium structures consisting of a one-rod-length–
thick monolayer of aligned rods with a fluid-like internal structure
(12). For our experiments, we use wild-type filamentous virus
(fd-wt) and fd-Y21M that differs from its wild-type counterpart
by a point mutation in the major coat protein (21). Both viruses
have comparable contour length (22); however, studies of bulk
cholesteric phase demonstrate that fd-wt forms a left-handed
cholesteric structure, whereas fd-Y21M forms a right-handed
one (Fig. 1A) (23–25). fd-wt/fd-Y12M mixture forms a homoge-
neous cholesteric phase with a pitch that depends on the ratio,
xfd ≡ nfd/(nfd + nfdY21M), where nfd and nfdY21M are the concen-
tration of fd-wt and fd-Y21M rods, respectively (24). The asso-
ciated twist wave-number varies monotonically and smoothly from
positive (right-handed) to negative (left-handed). It changes sign

at xfd = 0.26, the ratio at which the virus mixture is effectively
achiral.
The structure of the colloidal membrane’s edge is determined

by the balance of the surface energy associated with the rod-
depletion polymer interface and the elastic distortion energy
originating from the nonuniform packing of rods within the
membrane. The surface energy favors a curved edge profile,
whereas elastic distortions favor a squared edge (15, 16, 19, 26).
For fd-virus–based colloidal membranes, the surface energy
dominates; consequently, the membrane’s edge is curved and the
edge-bound rods have to twist away from the membrane normal to
fit the rounded profile imposed by the surface tension. Further-
more, the structure of the edge profile, and in particular the twist
penetration depth λt, is independent of the chirality of the viruses;
however, the chirality of the viruses does influence the effective
edge tension of the membrane (19).
The tilting of edge-bound rods away from the membrane

normal results in structural and optical anisotropy in the x–y
plane (Fig. 1 B and C) (15, 16, 19). The optical anisotropy can be
quantified by 2D-LC-PolScope that yields images where each
pixel’s intensity is proportional to the 2D projection in the x–y
plane of the retardance, R (27). The resulting twist at the edge
penetrates into the membrane interior over a characteristic
length scale (18). A radial retardance profile yields a twist pen-
etration length that is significantly different between fd-Y21M
and fd-wt (Fig. 1F). However, the 2D projection of the retard-
ance map does not reveal the handedness of the edge twist. To
extract this information, we use 3D-LC-PolScope (28). Briefly, a
microlens array is introduced into the back focal plane of the
objective of the 2D-LC-PolScope, producing a grid of conoscopic
images on the CCD camera. Each conoscopic image determines
the local orientation of rods. An azimuthally symmetric retardance

Fig. 1. Microscopic chirality of constituent rods determines preferred twist at the membrane’s edge. (A) Bacteriophage fd-wt is a rod-like molecule with left-
handed chirality (green). A single point mutation of the major coat protein switches the microscopic chirality, yielding fd-Y21M (blue). (B and C) 2D-
LC-PolScope images of fd-wt and fd-Y21M colloidal membranes. The local twist at the membrane’s edge results in optical retardance that is visualized
with polarization techniques. The retardance is coded in a linear grayscale that varies from R = 0 nm (black) to R = 3 nm (white). (D and E) 3D-LC-PolScope
image of fd-wt and fd-Y21M membranes reveals that the twist of the edge-bound rods is left-handed for fd-wt and right-handed for fd-Y21M. (F) Com-
parison of the radial retardance profile, R(r), for both fd-wt and fd-Y21Mmembranes. The membrane interior is located at r < 0 and its edge is at r = 0. For fd-wt
membranes, the twist penetration length is λt = 0.45 ± 0.05 μm, whereas for fd-Y21M membranes it is λt = 1.00 ± 0.11 μm. (G and H) Schematics of fd-wt and
fd-Y21M colloidal membranes. (Scale bars: 2 μm.)
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profile with a dark spot in the center indicates that rods at that
locality are oriented along the z axis. A shift of the zero-
retardance spot away from the center of a conoscopic image
yields the magnitude of the local virus tilting, whereas its radial
position indicates the 3D direction of the birefringence vector.
3D-LC-PolScope images show that fd-wt membranes composed
of fd-wt and fd-Y21M viruses are right- and left-handed, re-
spectively (Fig. 1 D and E).

Weakly Chiral Rod Mixtures Lead to Scalloped Membranes
Next, we examine the structure of colloidal membranes assem-
bled from a mixture of fd-wt and fd-Y21M. The difference in
their contour length of less than a few percent is not sufficient to
induce lateral phase separation (29); instead, we observe uni-
formly mixed membranes throughout the entire range of pa-
rameters studied here (Fig. 2). The membranes are stable for a
wide range of depletant concentrations and for all ratios xfd (Fig.
2A). The twist at the membrane edge is right-handed at low xfd
and left-handed at high xfd. Surprisingly, for intermediate
xfd (0.04 < xfd < 0.45), we no longer observe flat circular mem-
branes; instead, the membrane’s entire edge becomes deco-
rated with a series of outward protrusions that are terminated by
cusp-like defects (Fig. 2B). Furthermore, z scans indicate that
such scalloped membranes are not flat but have a distinct 3D
structure where a cusp point defect located below the membrane
is always followed by a defect located above the same plane
(Fig. 3).

2D-LC-Polscope images of the scalloped membranes demon-
strate that rods at the edge of each outward protrusion have the
same twist penetration length (Fig. 3 A and B and Fig. S1A).
However, 3D-LC-Polscope reveals that adjacent protrusions
have alternating left- and right-handed twist (Fig. 3C). The re-
gions of opposite twist are separated by cusp-like point defects.
Because each protrusion is always accompanied with two adja-
cent point defects alternating above and below the monolayer
plane, there can only be an even number of cusp defects along
the membrane circumference. The combined z-stack and 3D-LC-
PolScope images allow us to schematize the edge structure of the
scalloped membranes, which is more intricate compared with the
edge structure of chiral colloidal monolayers studied previously
(Fig. 3 D–F). The formation of the scalloped membranes is the
direct consequence of molecular chirality, because scalloped
membranes appear in the limit of weak chirality, that is, between
0.04 < xfd < 0.4 (Fig. 2A).
In principle, there could be localized demixing of the two rods

species, where fd-wt would preferentially localize at the edges
with a left-handed twist, and fd-Y21M at the edges with opposite
twist. This was not observed experimentally. We labeled all fd-wt
rods with a fluorescent dye (Alexa 488) and fd-Y21M rods with
fluorescent dye (Dylight 550). Using dual-view fluorescence, a
technique that allows us to simultaneously image fd-wt and fd-
Y21M fluorescent rods, we observe that, within experimental
error, membranes in bulk and at the edges remain homoge-
neously mixed for all xfd, even within the outward protrusion
(Fig. 2B and Movies S1 and S2). Furthermore, using previously
described techniques (18, 19), we have measured how the twist
penetration length λt, the interfacial tension γ, and the edge
bending rigidity kb depend on xfd. For scalloped membranes, we
find that outward protrusions with either handedness had the
same λt (Fig. S2) and γ and kb that could not be distinguished
within experimental error. Additionally, these quantities varied
continuously from xfd = 0 to xfd = 1, which also indicates mixture
homogeneity (Fig. S1).

Membrane Coalescence Generates Cusp-Like Deformations
Lateral coalescence of colloidal membranes can lead to the
formation of unconventional defect structures. For example, two
laterally coalescing membranes of the same handedness can trap
180° of twist, resulting in a π-wall line defect (26). To elucidate a
possible mechanism that leads to the formation of cusps in
scalloped membranes, we observed membrane coarsening by
using an angled-light 2D-LC-PolScope. This technique differs
from conventional 2D-LC-PolScope; instead of having the light
source aligned with the z axis, the almost closed aperture associ-
ated with the back focal plane is translated away from the optical
center, resulting in the plane waves illuminating the sample at an
angle. This in turn reveals the handedness of the local rod twisting.
We define a coordinate system in which the optical axis lies along
the z direction, and the membrane lies in the x–y plane (Fig. 4A).
The aperture of the condenser back focal plane is placed so that
the incident illumination is tilted in the x–z plane. It follows that
the rods within a membrane along the y axis (dashed line in Fig.
4B) exhibit a variable tilt with the respect to the illumination
plane. The regions where rods are perpendicular to the plane of
the illuminating wave will exhibit no optical retardance, whereas
retardance will increase with an increasing tilt of rods away from
the angle of the incident light. As a result, the lower edge of a
right-handed membrane exhibits reduced retardance (relative to
the rods in the bulk) as the viruses tilt toward the light source,
whereas the upper edge exhibits increased retardance due to the
rods tilting away from the light source (Fig. 4B). By the same
reasoning, a left-handed membrane will exhibit the opposite
behavior, with darker and brighter regions at the top and bottom
of the membrane along the y axis, respectively (Fig. 4C). This
technique allows us to distinguish between left- and right-handed

Fig. 2. Colloidal membranes assembled from fd-wt/fd-Y21M mixtures.
(A) Phase diagram of the fd-wt/fd-Y21M mixture as a function of the number
fraction xfd versus the depletant concentration CDextran. We observe scal-
loped membranes around the achiral ratio xfd = 0.26 (vertical dashed line) in
the orange-shaded region. (B) Dual-view fluorescence imaging of a scalloped
membrane at xfd = 0.26 and CDextran = 40 mg/mL. fd-wt viruses are labeled
with the fluorescent dye Alexa 488 (Left) and fd-Y21M viruses with DyLight-
550 (Right). The density distribution of both fd-wt (Left) and fd-Y21M (Right)
is homogeneous throughout the membrane interior. (Scale bars: 2 μm.)
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membrane edges with a higher spatial resolution than 3D-LC-
PolScope.
For 0.04 < xfd < 0.45, in the early stages of the sample mat-

uration, we observe circular membranes of either edge handed-
ness, indicating spontaneously broken achiral symmetry. Over
time, the intermediate-sized membranes with mixed edge twist
continue to coalesce. When two membranes with the same
handedness merge, we observe the formation of either a π-wall
or an array of pores at the coalescence junction, as was discussed
previously (Fig. 4B and Movie S3). By contrast, as the two
proximal edges of a membrane pair with the opposite twist
rupture, the adjoining neck widens and the twist of the edge-
bound rods is expelled by aligning constituent rods with the
membrane normal (Fig. 4C and Movie S4). This coalescence
process leads to a daughter membrane that has two outward
protrusions and two cusp defects at which the twist of edge-
bound rods switches handedness. Once formed, the cusp de-
fects remain stable indefinitely. An outward protrusion with a
pair of defects can also be imprinted into the edge using optical
tweezers (Fig. 4D and Movie S5). The method, which allows for
robust engineering of cusp defects, consists of pulling the twisted
ribbons out of the membrane. The first few steps of this pro-
cedure are similar to the previously studied disk-to-ribbons
transition (19). Subsequently, reversing the direction of the op-
tical trap and dragging it toward the membrane leads to the
formation of defect pairs.

Effective Interactions Between Adjacent Point Defects
The structure of the scalloped edges greatly depends on the
number fraction xfd and how close the membrane is to the achiral
limit (xfd = 0.26). At the boundary of stability of scalloped
membranes, near xfd = 0.04 or 0.45, a pair of point defects re-

mains bound to each other at a well-defined distance (Fig. 5A).
In comparison, close to the achiral limit the defect pair freely
moves along the edge and the total circumference of each out-
ward protrusion exhibits significant fluctuations (Movie S6).
These observations can be explained by the chiral control of
membrane line tension (19). Increasing the rod chirality raises the
free energy of the untwisted interior rods, whereas lowering the
free energy of edge bound twisted rods, thus leading to the chiral
control of the line tension. Likewise, chirality can also raise the
line tension if the twist at the membrane’s edge is the opposite of
the natural twist preferred by the constituent molecules.
For achiral membranes, the line tension associated with the

exposed edge of left-handed and right-handed outward protru-
sions is roughly equal. The overall free energy does not signifi-
cantly change as one outward protrusion extends its length at the
expense of another one, by translating the cusp defect. In this
limit, the point defects freely diffuse and the lengths of outward
protrusions with either handedness exhibit significant fluctua-
tions in agreement with experimental observations. However,
away from the achiral limit, there is a finite difference in line
tension between the left-handed and right-handed outward
protrusions, and the free energy is minimized by reducing the
length of the outward protrusions with unfavorable twist.
To quantitatively test these ideas, we have measured the ef-

fective interaction between a pair of point defects that are con-
nected by a single protrusion. We used phase contrast microscopy
to track the positions, si, of two adjoining defects along the
membrane contour (Fig. 5A). For an achiral sample (xfd = 0.26),
the separation between two adjoining defects, δs = si+1 − si,
fluctuates by many microns over a timescale of minutes (Fig. 5B).
However, away from achiral limit, we observe that the relative
separation between these defect pairs remains well defined on

Fig. 3. Structure of scalloped membranes. (A) Differential interference contrast (DIC) image of a scalloped membrane formed in a fd-wt /fd-Y21M mixture at
the achiral ratio xfd = 0.26 (Cdextran = 40 mg/mL). The membrane’s edge is decorated with a series of cusps separated by local outward protrusions. (B) 2D-
LC-PolScope image of the membrane profile around a point defect. The twist penetration length λt is identical on both sides of the cusp (Fig. S2). (C) 3D-
LC-PolScope image of the membrane profile surrounding the defect. The viruses have opposite twist on either side of the point defect. (D) Z scan of the
scalloped membranes under confocal microscopy. The point defects alternate above and below the monolayer plane. (E) Reconstruction of the membrane
based on the confocal images. (F) Schematic of a point defect inferred from the measurements in C and D. The protrusion amplitude in the xy plane is
denoted by A and the cusp height by Az. (Scale bars: 2 μm.)
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experimental timescales. We measured the probability distribution
function, P(δs), of the defects being separated by distance δs. The
measured distributions are described by a Gaussian: P(δs) =
exp(−α(δs − δs0)

2/2kBT), indicating that the defects are bound by
a harmonic potential centered around the equilibrium separation,

δs0 (Fig. 5C). The equilibrium defect separation as well as the
strength of the effective binding potential, α, depends on xfd, the
ratio of left- and right-handed rods. By varying membrane com-
position, we extracted how α, as well as the equilibrium separation,
δs0 = <δs>, depends on xfd (Fig. 5 D and E). Approaching the

Fig. 5. Ratio of left- and right-handed rods tunes the effective defect interactions. (A) Phase contrast image of scalloped membranes at CDextran = 40 mg/mL.
Number fraction is decreasing from Left to Right (xfd = 0.26, 0.15, and 0.05). Increasing the chirality by lowering xfd leads to tighter coupling between point
defects due to the increasing difference in the line tension of the protrusions with left- and right-handed twist. (Scale bars: 2 μm.) The color of the shaded
boxes indicates different mean-square displacement of defect separation in B. (B) Mean-square fluctuations of the separation of two coupled defects as a
function of time at different xfd. In the achiral case, the defects exhibit diffusive dynamics with the effective diffusion coefficient, D = 0.04 μm2/s. (C) Nor-
malized probability distribution function (PDF), P(δs − δs0), extracted from relative separation of two defects for different values of xfd taken at τ ∼ 100 s,
where <Δδs2> plateaus (red box in B). P(δs − δs0) is fitted by a Gaussian distribution exp(−α(δs − δs0)

2/2kBT). (D) The spring constant α of the harmonic potential
around the equilibrium position δs0 as a function of xfd. (E) Equilibrium distance between the defects δs0 as a function of xfd.

Fig. 4. Lateral coalescence of membranes with opposite chirality leads to scalloped edges. (A) Angled light illuminating 1D cross-section of twisted rods
reveals the handedness of edge-bound rods. Because the direction of the incident light is tilted toward the x axis, rods twisting counterclockwise along the
light source are not birefringent and appear dark. In contrast, rods twisting clockwise, away from the incoming light, have higher optical anisotropy and thus
appear bright. Tilting the light source breaks the symmetry of the 2D-LC-PolScope setup and allows us to distinguish between left-handed (L) and right-
handed (R) membranes with a higher spatial resolution than that of the 3D-LC-PolScope. The grayscale changes from dark to light with increasing retardance,
where the rods aligned with the direction of incident light have zero retardance. (B) The coalescence of two right-handed membranes, which are both bright
at the top and dark at the bottom, results in the formation of pores. (C) Coalescence of a left-handed membrane with a right-handed membrane produces
two cusps that separate the left-handed edge section from the right-handed one. (D) An outward protrusion with a pair of defects can be imprinted into the
edge using optical tweezers. The empirical method, which allows for robust engineering of cusp defects, consists of pulling the twisted ribbons out of the
membrane edge and subsequently dragging it into the membrane. (Scale bars: 4 μm.)
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achiral mixture limit (xfd = 0.26) leads to the increase of the mean
separation δs0 and a vanishing α. In this limit, the adjacent defects
effectively decouple from each other. Increasing chirality away
from the achiral limit decreases equilibrium separation and in-
creases the coupling strength, indicating tighter defect binding.
The existence of a finite equilibrium separation indicates a com-
petition between short-range repulsion, due to elastic distortions,
and long-range attraction caused by the asymmetry of the line
tension associated with the edges of the opposite twist.
The passive fluctuation analysis only maps the binding po-

tential within a few kBT around its minimum. To measure the
entire binding potential, we performed active experiments where
we moved one defect by δs using an optical trap, while simulta-
neously measuring the force F exerted on the other defect (Fig. 6
A and B). For this purpose, we embedded 1.5-μm-diameter
colloidal beads into two adjoining cusp defects. Once placed
there, beads remained attached to a defect for the entire dura-
tion of the experiment. To ensure that the beads do not alter the
defect structure, we measured thermal fluctuations of a defect
pair with and without embedded beads and found them to be
identical within experimental error (Fig. S3). We then calibrated
the trap to measure the zero force at the equilibrium distance δs0
(Fig. S4) and determined the optimal laser power to measure the
force F (Fig. S5). We extracted the force as a function of δs,
F(δs), which is averaged over 10 identical experiments (Fig. 6 A
and B). In the vicinity of the equilibrium separation, δs0, the
force measurements quantitatively agree with the fluctuation
experiments described above. As expected, the force is negative
below δs0, and positive above δs0, confirming that δs0 is the stable
equilibrium position. The force steeply increases for small sep-
arations and saturates at large separations, indicating that a
defect pair is permanently bound. The magnitude of the force
plateau and the slope of the force-increasing region depend on
the number fraction xfd. By moving farther away from the achiral
limit, we find that the equilibrium distance between bound de-
fects δs0 decreases. These experiments also demonstrate that the
pairwise defect interactions are governed by a balance between
short-range repulsion and long-range attraction.

Modeling the Interactions Between Two Adjacent Point
Defects
The theoretical model of scalloped membranes has been studied
previously (30). Here, we provide a quantitative comparison of

this theoretical model to experimental data. To summarize, our
model reduces the overall 3D geometry of the membrane to an
isolated configuration around a point defect. The outward pro-
trusions between two neighboring cusps must form via the in-
terplay between the line tension γ, the interfacial bending rigidity
kb, and the geometrical variables associated with the overall
membrane deformation. For an isolated defect, the free energy is
then given by the following:

F2 =
Z

dS
�
�kκG + σ

�
+

X
i=1,2

∮dsi
�
γi + kbκ2s,i

�
, [1]

where κG is the Gaussian curvature, �k is the corresponding elastic
modulus (31), and σ denotes the surface tension of the mem-
brane. The two edge profiles (enumerated by the index i) with
opposite handedness meet at the point defect and are in general
different, because their curvature κs,i and line tension γi can be
unequal. The relaxation length of each edge from a space curve
to a straight line in the monolayer plane is given by the natural
length scales ξi ≡

ffiffiffiffiffiffiffiffiffiffiffi
kb=γi

p
(ξi ∼ 0.5 μm), where kb is the bending

modulus of each edge. The bulk terms are integrated over the
membrane surface with an area element dS, whereas the interfacial
terms are integrated along the arc length with elements dsi. We
note that the mean curvature H of the scalloped membrane is
absent in Eq. 1, because it can only contribute to the membrane
free energy when there is a finite pressure difference of the sur-
rounding aqueous solution above and below the membrane surface.
However, in the presence of the free edges, the pressure difference
vanishes in equilibrium, resulting inH = 0, that is, a minimal surface
(Theoretical Methods). The stability of the scalloped membrane with
respect to a flat membrane is determined by the free-energy differ-
ence ΔF between the two configurations. Because we compare flat
and scalloped membranes with an equal area S, the surface tension
σ cancels out in ΔF. Eq. 1 and its minimization procedure by a
variational analysis, which yields the spring constant (Fig. 5D), the
equilibrium defect separation (Fig. 5E), and the phase diagram
(Fig. 6C), are discussed in detail in Theoretical Methods.
The structure of the scalloped edge is determined by the

balance between two contributions to the free energy, the line
energy and the surface energy. On the one hand, the line energy
suppresses the formation of outward protrusions and cusp de-
fects, because they increase the total membrane circumference.
On the other hand, each cusp defect generates negative Gaussian

Fig. 6. Measurement of defect binding and theoretical model of scalloped membranes. (A) Schematic of the active experiments to measure defect interactions.
Beads are embedded into defects. One defect is moved using an optical trap, and the force, F, exerted on the static defect is simultaneously measured.
(B) Comparison between the force measurements (dots) obtained with laser tweezers and the theoretical model (full curves) as a function of δs, the distance between
two adjacent defects. The black lines correspond to the measurements from the passive experiments (Fig. 5). (C) Theoretical phase diagram indicating the stability
region of scalloped membranes as a function of the Gaussian modulus �k versus xfd. The red line is the boundary between the flat and scalloped membrane phases.
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curvature, which lowers the free energy of elastic deformations if
the Gaussian modulus is positive and sufficiently large (30).
Based on the interplay between these two contributions, our
model predicts regions where scalloped membranes are more
stable than flat circular membranes as a function of �k and xfd
(Fig. 6C). To calculate this phase diagram, we have used theo-
retical fits to the experimental values for γ1 and kb (Fig. S1 and
Theoretical Methods). When the number fraction of the virus
mixture deviates from xfd = 0.26, an increasing magnitude of �k is
required to stabilize scalloped membranes (Fig. 6C). The reason
is that, away from the achiral limit, one of the edges (e.g., as-
sociated with γ2) has incompatible chirality with the preferred
overall handedness along the membrane boundary. Conse-
quently, the rods along that edge tilt into a high-energy config-
uration, as opposed to the molecules in the adjacent outward
protrusion that has lower energy (with γ1). This leads to
Δγ ≡ γ2 − γ1 > 0, that is, the overall free energy of the scalloped
membranes rises, and a long-range attractive interaction be-
tween two adjoined defects emerges. The two defects, however,
cannot approach very close to each other because the surface in
between must then flatten, leading to a diminishing negative
Gaussian curvature that in turn raises the free energy. This yields
short-ranged repulsive interactions between nearby defects (30,
32). The equilibrium defect separation is determined by the
competition between these two effects.
Theoretical predictions for the defects separation length, δs0,

and their coupling strength, α were fit to experimental mea-
surements (Fig. 5 D and E; Theoretical Methods). The line ten-
sion γ1 and the bending rigidity kb were taken from experiments
(Fig. S1), whereas we took Δγ and �k as fitting parameters. The
power spectrum of the membrane edge fluctuations yields γ1 and
kb within ∼10% error. However, because γ2 is very close to γ1,
measurements are not precise enough to extract the effective
difference between them. Thus, Δγ remains a free parameter,
and we assume the polynomial form Δγ = ð−115xfd + 30ÞkBT=μm
that vanishes at xfd = 0.26 and becomes 30 kBT/μm at xfd = 0, that
is, Δγ stays within the bounds of experimental uncertainty.
Likewise, theoretical fits to experimental curves yield the mag-
nitude of the Gaussian modulus, �k= 200kBT.
The theory quantitatively reproduces how the effective defect

interactions (coupling strength α and equilibrium separation δs0)
depend on xfd, thus confirming their origin: a long-range attraction
due to Δγ > 0, and a short-range repulsion associated with
membrane Gaussian curvature (Fig. 5 D and E). The modulus α as
a function of xfd, extracted from a linear approximation to the
theoretical force-extension curves at the point where the force
vanishes, qualitatively agrees with the experimental profiles (Fig.
5D). We note that, without the Gaussian curvature contribution, a
simpler 2D theory modeling a flat and thermodynamically un-
stable scalloped membrane consistently yields smaller δs0 values
than those from the 3D model presented here (Fig. S6). Hence,
the Gaussian curvature term with a positive modulus explains the
nature of in-plane and out-of-plane deformations as well as the
overall stability of the scalloped membranes. Furthermore, the model
with the same parameters also reproduces the optical tweezer mea-
surements of the effective defect interactions over a much larger
range of separations (Fig. 6B).
Certain precautions need to be taken when interpreting the

extracted magnitude of the Gaussian modulus �k= 200kBT. In
particular, another prediction of the model is that �k is equal to
the product of the in-plane protrusion amplitude A (Fig. 3F) and
the line tension (30). This is because bigger protrusions would
make the edge longer at constant γ, necessitating a higher �k to
stabilize the scalloped membranes. At xfd = 0.26, when the
protrusion size is 2 μm (Fig. 3A) and the line tension is
γ ∼ 500kBT=μm (Fig. S1D), the Gaussian modulus from this re-
lation is found as �k= γA∼ 103kBT. This value is almost an order
of magnitude higher than �k= 200kBT extracted for the theoret-

ical fits (Fig. 5 D and E). The resulting discrepancy between two
estimates of the Gaussian modulus may be due to the fact that
our model relies on a simple geometrical assumption, an axially
symmetric catenoidal surface, which likely accumulates more
negative Gaussian curvature than the experimental shape of the
membrane surface. Therefore, our analysis underestimates the
Gaussian modulus that stabilizes the scalloped membrane over a
flat configuration. Theoretically, compromising axial symmetry or
the smoothness of the surface around the cusp could yield a
minimal saddle surface with a lower amount of the total Gaussian
curvature. On the one hand, this would restore �k to higher values
to stabilize the scalloped membranes and resolve the discrepancy
between two estimates. On the other hand, this would greatly
increase the complexity of our model. We note that, experimen-
tally, the surface around the cusp must be governed by the local
matching of the rod orientations, which may indeed form a non-
smooth surface at the cusp. In this configuration, the structural
relation between the Gaussian modulus, the protrusion amplitude,
and the line tension must still hold, as discussed elsewhere (30).
There is a discrepancy between the experimental (Fig. 2A) and

theoretical (Fig. 6C) phase diagrams because theory implies that
at �k= 200kBT there exist no stable flat membranes between xfd =
0 and xfd = 1. There may be two main reasons underlying the
difference between the theoretical and experimental stability of
the scalloped membranes. First, the theoretical phase diagram is
calculated by quantifying only a point defect and the membrane
deformations in its neighborhood, whereas the experimental
stability of the scalloped membranes is governed by the overall
membrane conformation associated with multiple defects (Fig.
2B and Fig. 3A). If the number of defect pairs is less than the
overall membrane circumference can support, the scalloped
membrane is still stable with respect to a flat membrane but
would be in a metastable state. Experimentally, this might be the
case, as is evident from the defect pair evolution as a function of
chirality, leaving long flat sections between two successive pairs
(Fig. 5A). Second, we assumed that Δγ = 30 kBT/μm at xfd = 0 to
fit the spring constant (Fig. 5D); however, Δγ could be larger and
could be a strongly decreasing function of xfd. This would result
in a steeper phase boundary away from xfd = 0, and an overall
stabilization of flat monolayers away from the achiral limit.

Theoretical Estimate of Gaussian Curvature Modulus
A simple argument can be used to estimate the Gaussian cur-
vature modulus, �k, of colloidal membranes of thickness D, sur-
rounded by the depleting polymers with radius of gyration, Rg.
We assume that the polymers behave as an Asakura–Osawa ideal
gas of particles with effective diameter d, which is related to
polymer radius of gyration by the following: d= 4Rg=

ffiffiffi
π

p
. There

are two distinct contributions to �k: an intrinsic contribution
arising from the internal stresses among the virus particles �km,
and an entropic contribution arising from the polymer depletants
�kp. First, we consider the intrinsic contribution. Because it is
fluid, we assume that the membrane middle surface membrane
does not stretch when the membrane bends. The rods can adjust
around each other to accommodate a change in curvature without
changing their equilibrium spacing in the midplane. However,
imposing any curvature onto a membrane will induce a strain that
depends on z, the distance along the membrane normal away from
the midplane. In particular, if the membrane has mean curvature
H and Gaussian curvature κG, then the areal strain of the surface
at distance z is given by «ðzÞ= 2Hz+ κG   z2 (33). The correspond-
ing lateral membrane stress is σðzÞ= σ0ðzÞ+Y«ðzÞ, where σ0ðzÞ is
the stress in the membrane when it is flat, and Y is the modulus
for areal compression. Because the rods are uniform along their
lengths, we take Y to be independent of z. The lateral stress is
isotropic because the membrane is fluid. There is a compressive
stress in the membrane even when it is flat because the polymer
depletants squeeze the membrane (34). The total volume excluded
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to the polymers for a flat membrane of area A is V0,ex =AðD+ dÞ,
leading to a contribution to the free energy per unit area
γ = nkBTðD+ dÞ, which can also be considered an entropic tension
(16). n is polymer concentration. To balance this tension, the rods
must experience a compressive stress σ0ðzÞ=−n  kBTðD+ dÞ=D. To
calculate the contribution to �k from the rods in the membrane with
zero mean curvature, we write the membrane free energy per unit
mid-surface by integrating the stress with the respect to the strain as
Fm =

RD=2
−D=2 dz

R «ðzÞ
0 d«′σð«′Þ= �kmκG, where �km =

RD=2
−D=2 dz  z

2σ0ðzÞ
(17, 35). The intrinsic contribution to the Gaussian curvature
modulus is always negative, �km = −nkBTðD+ dÞD2=12. Next, we
consider the contribution of the depleting polymer to the total free
energy of the system. In general, as the membrane assumes a curved
configuration, the volume excluded to the depleting polymer will
change from V0,ex. Specifically,, for a membrane with zero-mean
curvature: Vex =

R
dA

R ðD+dÞ=2
−ðD+ dÞ=2ð1+κGz2Þdz. Consequently, a mem-

brane that goes from a flat state to a configuration with a negative
Gaussian curvature will be accompanied with the decrease in
the volume excluded to the depletant polymers and, thus, will
increase the overall system entropy. This excluded volume ef-
fect introduces a positive contribution to the Gaussian modu-
lus. Integrating across the membrane thickness and using Fp =
nkBTVex = γA+ �kp

R
dAκG yields �kp = ðD+ dÞ3nkBT=12. The net

Gaussian curvature modulus is therefore �k= �kp + �km ≈D2dnkBT=6,
where the approximation follows because the membrane is much
thicker than the polymer particles, D >> d.
To estimate the polymer contribution to the Gaussian curva-

ture modulus, we use n ∼ 40 mg/mL, D ∼ 880 nm, and d ∼ 30 nm
for a dextran with molecular weight of 500,000 g/mol (36). With
these numbers, we find that �k∼185 kBT. Despite its approximate
nature, our estimate yields the magnitude �k that is in reasonable
agreement with experimental measurements. Note that our ar-
gument for the polymer contribution is similar to the model put
forward to explain negative Gaussian curvature modulus for
surfactant interfaces: for a saddle-splay surface with H = 0, there
is less room for the surfactant chains, which therefore must
stretch and incur a higher free energy (37).

Discussions and Conclusions
Our combined theoretical and experimental work demonstrates
that membranes composed of achiral rods exhibit higher struc-
tural complexity compared with flat membranes assembled from
chiral rod-like viruses. In the latter case, strong chirality enforces
uniform twist of rods along the entire membrane circumference,
leading to the formation of flat 2D disks. By contrast, weakly
chiral or achiral membranes exhibit an intriguing instability that
is driven by an interplay between the Gaussian curvature of a
colloidal membrane and the spontaneous achiral symmetry
breaking of rods located at the membrane’s edge. The achiral
symmetry breaking induces formation of cusp-like defects. These
defects in turn allow the membrane to adopt a 3D shape that
decreases the overall energy associated with its negative Gaussian
curvature.
Despite the important role it plays in diverse processes, mea-

suring the Gaussian modulus of conventional lipid bilayers re-
mains a significant experimental challenge. In comparison, the
properties of the colloidal membranes described here allow us
to estimate their Gaussian modulus. Conventional bilayers have
a negative Gaussian modulus, which means that saddle-shaped
deformations increase the membrane energy (7, 10, 11, 38). On
the contrary, experiments described here, as well as previous
observations of diverse assemblages with excess Gaussian cur-
vatures such as arrays of pores and twisted ribbons (19, 26),
demonstrate that colloidal monolayers, in contrast to lipid bila-
yers, have positive Gaussian moduli.
Achiral symmetry breaking has been observed in diverse soft

systems with orientational order, ranging from lipid monolayers
and nematic tactoids to confined chromonic liquid crystals (39–

45). In particular, the measured structure and interactions of the
cusp-like defects in colloidal membranes resemble studies of
point defects moving along a liquid crystalline dislocation line in
the presence of chiral additives (46). The main difference is that
in the colloidal membranes the achiral symmetry breaking leads
to out-of-plane 3D membrane distortions that couples liquid
crystal physics to membrane deformations. This is not possible
for inherently confined liquid crystalline films.
From an entirely different perspective, a number of emerging

techniques have been developed to fold, wrinkle, and shape thin
elastic sheets with in-plane elasticity (47–50). So far, these efforts
were focused on studying instability of thin elastic films with finite
in-plane shear modulus. The methods to achieve folding or wrin-
kling of thin sheets involves either engineering of in-plane hetero-
geneities or imposing an external force. Our work demonstrates that
simpler uniform elastic sheets lacking in-plane rigidity can sponta-
neously assume complex 3D folding patterns that decorate its edge.
Finally, methods described here and in our previous work

should be applicable to any monodisperse rod type with suffi-
ciently large aspect ratio. Thus, they might offer a scalable
method for robust assembly of photovoltaic devices composed of
nanorods. Our previous investigation of chiral fd-wt colloidal
membranes demonstrated that the twist at their edges introduces
a significant energetic barrier that suppresses their lateral co-
alescence (26). In such samples, membranes with diameters
ranging from 10 to 100 μm are commonly found. Compared with
chiral colloidal membranes, we find that colloidal membranes of
monodisperse virus mixtures that are close to the achiral limit
coalesce much faster and can easily reach millimeter dimensions.

Materials and Methods
Sample Preparation. Both viruses, fd and fd-Y21M, were grown in bacteria
and purified as described elsewhere (19). fd-Y21M, has a single point mu-
tation in the amino acid sequence of the major coat protein: amino acid
number 21 is replaced from Y to M. fd and fd-Y21M were labeled with
fluorescent dye as described elsewhere (51). The preparation of optical
chambers was described elsewhere (19).

Optical Microscopy. Experiments were carried out on an inverted microscope
(Nikon TE 2000) equipped with traditional polarization optics, a differential
interference contrast (DIC) module, a fluorescence imaging module, and 2D-
LC-Polscope module. For dual-view fluorescence imaging, we used DV2 from
Photometrics. We used a 100× oil-immersion objective (PlanFluor, N.A. 1.3,
for DIC and PlanApo, N.A. 1.4, for phase contrast). Images were recorded
with cooled CCD cameras [CoolSnap HQ (Photometrics) or Retiga Exi
(QImaging)]. For 3D-LC-PolScope measurements, we used a Zeiss Axiovert 200M
microscope with a Plan Apochromat oil-immersion objective (63×/1.4 N.A.) and
a monochrome CCD camera (Retiga 4000R; QImaging).

Laser Tweezers. A 1,064-nm laser (Coherent Compass) was brought into the
optical path of an inverted microscope (Nikon Eclipse Te2000-u) and focused
with a 100× objective onto the image plane (Nikon PlanFlour, N.A. 1.3). To
simultaneously trap multiple beads, a single beam was time shared between
different positions using an acousto-optic deflector (IntraAction-276HD)
(52). Bead position was measured using back focal plane interferometry
and a quadrant photodiode (QPD) (53). A separate 830-nm laser (Point
Source Iflex-2000) was used as a detection beam. To calibrate the photodi-
ode, we scan a bead across the detection beam in known step sizes and
measure the corresponding voltage change. Trap stiffness was calibrated by
analyzing the power spectrum of the bead position (53).
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